• Title/Summary/Keyword: M2M Device

Search Result 2,298, Processing Time 0.032 seconds

Determination of the Depletion Depth of the Deep Depletion Charge-Coupled Devices

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.233-236
    • /
    • 2006
  • A 3-D numerical simulation of a buried-channel CCD (Charge Coupled Device) with a deep depletion has been performed to investigate its electrical and physical behaviors. Results are presented for a deep depletion CCD (EEV CCD12; JET-X CCD) fabricated on a high-resistivity $(1.5k\Omega-cm)\;65{\mu}m$ thick epi-layer, on a $550{\mu}m$ thick p+ substrate, which is optimized for X-ray detection. Accurate predictions of the Potential minimum and barrier height of a CCD Pixel as a function of mobile electrons are found to give good charge transfer. The depletion depth approximation as a function of gate and substrate bias voltage provided average errors of less than 6%, compared with the results estimated from X-ray detection efficiency measurements. The result obtained from the transient simulation of signal charge movement is also presented based on 3-Dimensional analysis.

High System Performance with Plasmonic Waveguides and Functional Devices

  • Kwong, Wing-Ying
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.319-326
    • /
    • 2010
  • Photonics offers a solution to data communication between logic devices in computing systems; however, the integration of photonic components into electronic chips is rather limited due to their size incompatibility. Dimensions of photonic components are therefore being forced to be scaled down dramatically to achieve a much higher system performance. To integrate these nano-photonic components, surface plasmon-polaritons and/or energy transfer mechanisms are used to form plasmonic chips. In this paper, the operating principle of plasmonic waveguide devices is reviewed within the mid-infrared spectral region at the 2 ${\mu}m$ to 5 ${\mu}m$ range, including lossless signal propagation by introducing gain. Experimental results demonstrate that these plasmonic devices, of sizes approximately half of the operating free-space wavelengths, require less gain to achieve lossless propagation. Through optimization of device performance by means of methods such as the use of new plasmonic waveguide materials that exhibit a much lower minimal loss value, these plasmonic devices can significantly impact electronic systems used in data communications, signal processing, and sensors industries.

Ultra Thin Film Barrier Layer for Plastic OLED

  • Kopark, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.44-47
    • /
    • 2004
  • Fabrication of barrier layer on PES substrate and plastic OLED device by atomic layer deposition are carried out. Simultaneous deposition of 30nm of $AlO_x$ film on both sides of PES gives film MOCON value of 0.0615g/$m^2$.day (@38$^{\circ}C$, 100% R.H). Introduction of conformal $AlO_x$ film by ALD resulted in enhanced barrier properties for inorganic double layered film including PECVO $SiN_x$. Preliminary life time to 91% of initial luminance (1300 cd/$m^2$ ) for 100nm of PECVD $SiN_x$/30nm of ALD $AlO_x$ coated plastic OLED device was 260 hours.

  • PDF

Coulomb Interaction Induced Gap in an Al/SiO2/Si:P tunnelling Device

  • Jo, Yongcheol;Kim, Jongmin;Cho, Sangeun;Kim, Hyungsang;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.50-51
    • /
    • 2017
  • Strongly correlated electron systems which induce strong electron-electron interaction at ultra-low temperatures have always been an intriguing topic in mesoscopic condensed matter physics. Below 130 mK, a peculiar gap can be found in Al/$SiO_2$/Si:P structured tunnelling devices. The gap survives at the base temperature of more than 1800 gauss (30 mK), contrary to the superconductivity of the top Al electrode, which is completely suppressed above 100 gauss. This outcome implies that the observed gap is induced by Coulomb interaction in the heavily doped Si.

Synthesis and Electroluminescent Properties of Diphenyl Benzeneamine Derivatives as Dopant Material

  • Seo, H.J.;Park, H.C.;Chung, T.G.;Lee, S.E.;Park, J.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.955-958
    • /
    • 2003
  • We report the photo-(PL) and electroluminescence (EL) properties of new conjugated compounds based on diphenyl benzeneamine moiety, 4,4'-(1,4-phenylenedi-(1E)-2,1-ethenediyl]bis(N,N-diphenyl-benzenamine](PEDB) and 4,4'-([1,1 -biphenyl]-4,4'-diyldi-2,1-ethenediyl)bis[N,N-diphenyl-benzenamine)(BPEDB), as emitting materials and dopant materials. The ITO/m-MTDATA/NPB/DPVBi + BPEDB(1%) /Alq3/LiF/Al device shows blue EL spectrum at 458nm and high efficiency(5.3 cd/A). PEDB as dopant shows also blue EL spectrum around ${\lambda}$ max=463nm and 4.1 cd/A high efficiency in ITO/m-MTDATA/NPB/DPVBi + PEDB(1%)/Alq3/LiF/Al device.

  • PDF

A Study on Powder Electroluminescent Device through Structure and Thickness Variation (구조 및 두께 변화에 따른 후막 전계 발광소자에 관한 연구)

  • 오주열;정병선;이종찬;박대희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.9-11
    • /
    • 1998
  • A phenomenon of electroluminescent radiate as electric field applied in the phosphor, in this paper, we produced the Powder Electroluminescent Device(PELD) which was changing the structure and the thickness of phosphor and insulator for realization of the PELD with high brightness. We made PELD with structure that is WK-1(ITO film/Phosphor/Insulator/Electrode), WK-2(ITO film/Phosphor/Insulator/Electro de), WK-3(ITO film/Phosphor/Insulator/Electrode), WK-4(ITO film/Phosphor+Insulator/ Electrode). The property of the produced PELD are analyzed by measuring the spectrum which electrical and optical property, the brightness and the transferred charge density. In this result, the structure of WK-4 have good luminescence property than others, it's effective thickness is 60${\mu}{\textrm}{m}$. At 100V 400Hz, High brightness of 2700cd/m2 was performed.

  • PDF

High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector

  • Lim, Jaeseong;Kumar, Mohit;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.333-338
    • /
    • 2022
  • In this work, we developed silver nanowires and a silicon based Schottky junction and demonstrated ultrafast broadband photosensing behavior. The current device had a response speed that was ultrafast, with a rising time of 36 ㎲ and a falling time of 382 ㎲, and it had a high level of repeatability across a broad spectrum of wavelengths (λ = 365 to 940 nm). Furthermore, it exhibited excellent responsivity of 60 mA/W and a significant detectivity of 3.5 × 1012 Jones at a λ = 940 nm with an intensity of 0.2 mW cm-2 under zero bias operating voltage, which reflects a boost of 50 %, by using the AC PV effect. This excellent broadband performance was caused by the photon-induced alternative photocurrent effect, which changed the way the optoelectronics work. This innovative approach will open a second door to the potential design of a broadband ultrafast device for use in cutting-edge optoelectronics.

Enhanced Luminous Intensity in LEDs with Current Blocking Layer (전류 차단 층을 갖는 LED의 향상된 광세기)

  • Yoon, Seok-Beom;Kwon, Kee-Young;Choi, Ki-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.291-296
    • /
    • 2014
  • Inserting a $SiO_2$ layer underneath the p-pad electrode as the current blocking layer (CBL) structure and extending p-metal finger patterns, the GaN LEDs using an indium-tin-oxide (ITO) layer show the improved light output intensity, resulting from better current spreading and reduced light loss on the surface of p-pad metal. The LEDs with an oxide layer of $100{\mu}m$-pad-width and $6{\mu}m$-finger-width have better light output intensities than those with an oxide layer of $105{\mu}m$-pad-width and $12{\mu}m$-finger-width. Using the ATLAS device simulator from Silvaco Corporation, the current density distributions on the active layer in CBL LEDs have been investigated.

A Study of Point Selection for Loading Cells in Bi-directional Pile Load Test (양방향재하시험에서 재하장치 위치 선정에 관한 연구)

  • Yoon, Minseung;Kim, Junwoo;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.11-16
    • /
    • 2013
  • Success or failure of the bi-directional pile load test for drilled shaft depends on point selection for loading cells, that is balanced location both uplift force and downward force. Methods to evaluate the ultimate unit side resistance in rockmass layer in both domestic and foreign are based on the uniaxial compression strength of rock core, which can hardly be obtained in domestic rockmass layers which are weathered rockmass layer and soft rockmass layer with very low RQD. Therefore, this study suggested the relation charts between the revised SPT N values and developed unit side resistance of each different layers, which were obtained from bi-directional pile load tests in various domestic sites. To evaluate the appropriateness of the relation charts, the developed unit side resistances from the relation charts were used to select the loading cell position and compared with the measured unit side resistances from field pile load test. Results showed that the developed side resistance from relation charts and the measured side resistance of weathered soil layer and weathered rock layer were very close. Average developed side resistance($1,325kN/m^2$), which are average of upper soft rock layer of loading device($1,151kN/m^2$) and lower($1,500kN/m^2$), was similar with the estimated value ($1,250kN/m^2$).

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.