• Title/Summary/Keyword: M.R.T.

Search Result 2,807, Processing Time 0.027 seconds

A Study on Nuclear Information Management System Utilizing Microcomputer (마이크로 컴퓨터를 이용한 원자력 분야 정보 관리 시스템 개발)

  • 김규선;김태승
    • Journal of the Korean Society for information Management
    • /
    • v.6 no.1
    • /
    • pp.15-36
    • /
    • 1989
  • The r a p i d i n c r e a s e o f microcomputer technology has r e s u l t e d i n t h e broad a p p l i c a t i o n t o various f i e l d s . The purpose of t h l s paper 1s to design a computerized r e t r i e v a l system f o r nuclear information m a t e r i a l s using a microcomputer.

  • PDF

The Molecular Weight Dependance of Paramagnetic Gd-chelates on T1 and T2 Relaxation Times (상자성 복합체의 분자량에 따른 T1 및 T2 자기이완시간에 관한 연구)

  • Kim In-Sung;Lee Young-Ju;Kim Ju-Hyun;Sujit Dutta;Kim Suk-Kyung;Kim Tae-Jeong;Kang Duk-Sik;Chang Yong-Min
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • To evaluate the T1, T2 magnetic relaxation properties of water molecule according to molecular weight of paramagnetic complex. 4-aminomethyicyclohexane carboxylic acid (0.63 g, 4 mmol) was mixed with the suspension solution of DMF (15 ml) and DTPA-bis-anhydride (0.71 g, 2 mmol) to synthesize the ligand. The ligand was then mixed with $Gd_2O_3$ (0.18 g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1 mM and then the relaxation times were measured at 1.57 (64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG (Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. In case of inversion recovery sequence, total 35 images with different inversion time(T1)s ranging from 50 msec to 1,750 msec. To estimate the relaxation times, the signal intensity of each sample was measured using region of Interest (ROI) and then fitted by non-linear least square method to yield T1, T2 relaxation times and also R1 and R2. Compared to T1=($205.1{\pm}2.57$) msec and T2=($209.4{\pm}4.28$) msec of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, T1 and T2 values of new paramagnetic complexes were reduced along with their molecular weight. That is, T1 value was ranged from $(96.35{\pm}2.04)\;to\;(79.38{\pm}1.55)$ msec and T2 value was ranged from $(91.02{\pm}2.08)\;to\;(76.66{\pm}1.84)$ msec. Among new paramagnetic complexes, there is a tendency that the R1 and R2 increase as the molecular weight is increases. As molecular weight of paramagnetic complex increases, T1 and T2 relaxation times reduce and thus the increase of relaxivity (R1 and R2) Is proportional to molecular weight.

  • PDF

Comparison between C.M.R.T. and acupuncture in the treatment of liver dysfunction (간 기능 이상 치료에 대한 C.M.R.T. 치료 부위(T8 횡돌기)와 경혈과의 비교)

  • Sim Young;Lee Jun-Moo
    • Korean Journal of Acupuncture
    • /
    • v.19 no.2
    • /
    • pp.97-117
    • /
    • 2002
  • Chiropractic is very similar to Oriental Medicine in philosophy on the cause of diseases and in utilization of spinal articulations for diagnosis and treatment. In this paper the spinal area used to treat liver dysfunction in S.O.T. technique, one of chiropractic techniques, was compared to the acupncture points used to cure the same conditions. Because both Oriental medicine and Chiropractic are dealing with autonomic nervous system in regulating abnormal conditions, also the innervation of spinal nerves to those areas was checked. The spinal area that S.O.T. technique utilizes to correct liver dysfunction is transverse processes of T8, which corresponds to B16. Acupncture points from this level down to T12/L1, which are B16, B17, B18, B19, B20, B21, B45, B46, B47, B48, B49, B50, GV6, GV7, GV8 and GV9, all have been applied to control liver function. Apparent discrepency exists in therapeutic areas for liver malfunction between the two natural healing arts. According to the neurology texts, liver is innervated by sympathetic fibers from the 7th-10th thoracic segments and by parasympathetic fibers from vagus nerve. Sympathetic afferent nerves from the liver reach the 7th-12th thoracic spinal cord segments. It can be said all the 7th-12th thoracic spinal cord segments are related to liver function. Therefore the areas used for liver dysfunction in both natural medicine are appropriately selected. However, B16, the Oriental medical equivalent of the main spinal area which is used for lowered liver function in C.M.R.T. Technique, is not utilized as frequent as in Oriental medicine.

  • PDF

ITERATIVE METHODS FOR LARGE-SCALE CONVEX QUADRATIC AND CONCAVE PROGRAMS

  • Oh, Se-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.753-765
    • /
    • 1994
  • The linearly constrained quadratic programming(QP) considered is : $$ min f(x) = c^T x + \frac{1}{2}x^T Hx $$ $$ (1) subject to A^T x \geq b,$$ where $c,x \in R^n, b \in R^m, H \in R^{n \times n)}$, symmetric, and $A \in R^{n \times n}$. If there are bounds on x, these are included in the matrix $A^T$. The Hessian matrix H may be positive definite or negative semi-difinite. For large problems H and the constraint matrix A are assumed to be sparse.

  • PDF

LOXODROMES AND TRANSFORMATIONS IN PSEUDO-HERMITIAN GEOMETRY

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.817-827
    • /
    • 2021
  • In this paper, we prove that a diffeomorphism f on a normal almost contact 3-manifold M is a CRL-transformation if and only if M is an α-Sasakian manifold. Moreover, we show that a CR-loxodrome in an α-Sasakian 3-manifold is a pseudo-Hermitian magnetic curve with a strength $q={\tilde{r}}{\eta}({\gamma}^{\prime})=(r+{\alpha}-t){\eta}({\gamma}^{\prime})$ for constant 𝜂(𝛄'). A non-geodesic CR-loxodrome is a non-Legendre slant helix. Next, we prove that let M be an α-Sasakian 3-manifold such that (∇YS)X = 0 for vector fields Y to be orthogonal to ξ, then the Ricci tensor 𝜌 satisfies 𝜌 = 2α2g. Moreover, using the CRL-transformation $\tilde{\nabla}^t$ we fine the pseudo-Hermitian curvature $\tilde{R}$, the pseudo-Ricci tensor $\tilde{\rho}$ and the torsion tensor field $\tilde{T}^t(\tilde{S}X,Y)$.

WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Kim, Yong-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1029-1036
    • /
    • 1997
  • Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

  • PDF

A 0.13 ${\mu}m$ CMOS UWB RF Transmitter with an On-Chip T/R Switch

  • Kim, Chang-Wan;Duong, Quoc-Hoang;Lee, Seung-Sik;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.526-534
    • /
    • 2008
  • This paper presents a fully integrated 0.13 ${\mu}m$ CMOS MB-OFDM UWB transmitter chain (mode 1). The proposed transmitter consists of a low-pass filter, a variable gain amplifier, a voltage-to-current converter, an I/Q up-mixer, a differential-to-single-ended converter, a driver amplifier, and a transmit/receive (T/R) switch. The proposed T/R switch shows an insertion loss of less than 1.5 dB and a Tx/Rx port isolation of more than 27 dB over a 3 GHz to 5 GHz frequency range. All RF/analog circuits have been designed to achieve high linearity and wide bandwidth. The proposed transmitter is implemented using IBM 0.13 ${\mu}m$ CMOS technology. The fabricated transmitter shows a -3 dB bandwidth of 550 MHz at each sub-band center frequency with gain flatness less than 1.5 dB. It also shows a power gain of 0.5 dB, a maximum output power level of 0 dBm, and output IP3 of +9.3 dBm. It consumes a total of 54 mA from a 1.5 V supply.

  • PDF

Numerical Analysis for Thermal Design of Electronic Equipment Using Phase Change Material (상변화 물질을 이용한 전자 장비 방열 설계의 수치 해석적 연구)

  • Lee, Dong Kyun;Lee, Won Hee;Park, Sung Woo;Kang, Sung Wook;Cho, Ji Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • In this study, a case analysis for thermal design of electronic equipment using a phase change material(PCM) was performed numerically using ANSYS Fluent. Experiments were conducted to find the temperature increase(${\Delta}T_m$), melting temperature($T_m$), and volume expansion of the PCM under the melting process. To verify the accuracy of the Fluent solver model, $T_m$, ${\Delta}T_m$, and the melting time were compared with experimental results. To simulate the temperature stagnation phenomenon under the melting process, the equivalent specific heat method was applied to calculate the thermal properties of the PCM in the solver model. To determine the thermal stability of electronic equipment, we paid special attention to finding a thermal design for the PCM using fins. Further, an additional numerical analysis is currently underway to find an optimum design.