• 제목/요약/키워드: M. Matsumoto

검색결과 99건 처리시간 0.026초

일본 핀슬러 기하학파 형성의 시작에 관하여 (On the beginning of the formation of Japanese School of Finsler Geometry)

  • 원대연
    • 한국수학사학회지
    • /
    • 제34권2호
    • /
    • pp.55-74
    • /
    • 2021
  • Matsumoto Makoto is regarded as founding father of the Japanese school of Finsler geometry because he established the Japanese Society of Finsler Geometry in 1968 and organized the Symposium every year since then. In this paper, we investigate how Matsumoto initiated the study of this topic leaping over geographical limit and how Yano Kentaro and Kawaguchi Akitsugu had affected Matsumoto in the formation of the Japanese school of Finsler geometry. We also take a view of the role of É. Cartan who invented the concept of the connection in early 20th century in this regard.

ON THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Tayebi, Akbar;Tabatabaeifar, Tayebeh;Peyghan, Esmaeil
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.115-128
    • /
    • 2014
  • In this paper, we study the second approximate Matsumoto metric F = ${\alpha}+{\beta}+{\beta}^2/{\alpha}+{\beta}^3/{\alpha}^2$ on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

일본 핀슬러 기하학파의 60년 역사 (On the history of 60 years of Japanese School of Finsler Geometry)

  • 원대연
    • 한국수학사학회지
    • /
    • 제34권3호
    • /
    • pp.89-111
    • /
    • 2021
  • This paper is a continuation of the study on the history of the Japanese school of Finsler geometry. We had studied on the birth of Japanese school of Finsler geometry. In this paper, we find out what motivated Japanese to embrace Finsler geometry and we collect the history and analyze trends of Japanese school of Finsler geometry since its founding by M. Matsumoto.

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.