• Title/Summary/Keyword: M-iteration

Search Result 155, Processing Time 0.027 seconds

THE BINOMIAL METHOD FOR A MATRIX SQUARE ROOT

  • Kim, Yeon-Ji;Seo, Jong-Hyeon;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.511-519
    • /
    • 2013
  • There are various methods for evaluating a matrix square root, which is a solvent of the quadratic matrix equation $X^2-A=0$. We consider new iterative methods for solving matrix square roots of M-matrices. Particulary we show that the relaxed binomial iteration is more efficient than Newton-Schulz iteration in some cases. And we construct a formula to find relaxation coefficients through statistical experiments.

ON THE ON THE CONVERGENCE BETWEEN THE MANN ITERATION AND ISHIKAWA ITERATION FOR THE GENERALIZED LIPSCHITZIAN AND Φ-STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.635-644
    • /
    • 2008
  • In this paper, we prove that the equivalence between the convergence of Mann and Ishikawa iterations for the generalized Lipschitzian and $\Phi$-strongly pseudocontractive mappings in real uniformly smooth Banach spaces. Our results significantly generalize the recent known results of [B. E. Rhoades and S. M. Soltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitz operators, Int. J. Math. Math. Sci. 42 (2003), 2645.2651].

ITERATIVE SOLUTION OF NONLINEAR EQUATIONS WITH STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.605-615
    • /
    • 2000
  • Let E be a real Banach space with property (U,${\lambda}$,m+1,m);${\lambda}{\ge}$0; m${\in}N$, and let C be a nonempty closed convex and bounded subset of E. Suppose T: $C{\leftrightarro}C$ is a strongly accretive map, It is proved that each of the two well known fixed point iteration methods( the Mann and Ishikawa iteration methods.), under suitable conditions , converges strongly to a solution of the equation Tx=f.

IMPROVED GENERALIZED M-ITERATION FOR QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS WITH APPLICATION IN REAL HILBERT SPACES

  • Akutsah, Francis;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.59-82
    • /
    • 2022
  • In this paper, we present a modified (improved) generalized M-iteration with the inertial technique for three quasi-nonexpansive multivalued mappings in a real Hilbert space. In addition, we obtain a weak convergence result under suitable conditions and the strong convergence result is achieved using the hybrid projection method with our modified generalized M-iteration. Finally, we apply our convergence results to certain optimization problem, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other improved iterative methods (modified SP-iterative scheme) in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.

A GENERATION OF A DETERMINANTAL FAMILY OF ITERATION FUNCTIONS AND ITS CHARACTERIZATIONS

  • Ham, YoonMee;Lee, Sang-Gu;Ridenhour, Jerry
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.481-494
    • /
    • 2008
  • Iteration functions $K_m(z)$ and $U_m(z)$, $m{\geq}2$are defined recursively using the determinant of a matrix. We show that the fixed-iterations of $K_m(z)$ and $U_m(z)$ converge to a simple zero with order of convergence m and give closed form expansions of $K_m(z)$ and $U_m(z)$: To show the convergence, we derive a recursion formula for $L_m$ and then apply the idea of Ford or Pomentale. We also find a Toeplitz matrix whose determinant is $L_m(z)/(f^{\prime})^m$, and then we adapt the well-known results of Gerlach and Kalantari et.al. to give closed form expansions.

  • PDF

NLOS Signal Effect Cancellation Algorithm for TDOA Localization in Wireless Sensor Network

  • Kang, Chul-Gyu;Lee, Hyun-Jae;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2010
  • In this paper, the iteration localization algorithm that NLOS signal is iteratively removed to get the exact location in the wireless sensor network is proposed. To evaluate the performance of the proposed algorithm, TDOA location estimation method is used, and readers are located on every 150m intervals with rectangular shape in $300m{\times}300m$ searching field. In that searching field, the error distance is analyzed according to increasing the number of iteration, sub-blink and the estimated sensor node locations which are located in the iteration range. From simulation results, the error distance is diminished according to increasing the number of the sub-blink and iteration with the proposed location estimation algorithm in NLOS environment. Therefore, to get more accurate location information in wireless sensor network in NLOS environments, the proposed location estimation algorithm removing NLOS signal effects through iteration scheme is suitable.

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

NOOR ITERATIONS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS

  • Jeong, Jae-Ug;Noor, M.-Aslam;Rafig, A.
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.337-348
    • /
    • 2004
  • In this paper, we suggest and analyze Noor (three-step) iterative scheme for solving nonlinear strongly accretive operator equation Tχ = f. The results obtained in this paper represent an extension as well as refinement of previous known results.

  • PDF