• Title/Summary/Keyword: M-integral

Search Result 663, Processing Time 0.024 seconds

ON STRONG Mα-INTEGRAL OF BANACH-VALUED FUNCTIONS

  • You, Xuexiao;Cheng, Jian;Zhao, Dafang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.259-268
    • /
    • 2013
  • In this paper, we define the Banach-valued strong $M_{\alpha}$-integral and study the primitive of the strong $M_{\alpha}$-integral in terms of the $M_{\alpha}$-variational measures. We also prove that every function of bounded variation is a multiplier for the strong $M_{\alpha}$-integral.

THE Mα-INTEGRAL

  • Park, Jae Myung;Ryu, Hyung Won;Lee, Hoe Kyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.99-108
    • /
    • 2010
  • In this paper, we define the $M_{\alpha}$-integral and investigate properties of the $M_{\alpha}$-integral.

APPLICATIONS OF TWO-STATE M-INTEGRAL FOR ANALYSIS OF ADHESIVE LAP JOINTS (접착 LAP JOINT 해석을 위한 두 상태 M-적분의 응용)

  • 임세영;이용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-42
    • /
    • 1997
  • The two-state or mutual M-integral which is derived from tile M-integral and is applicable for two elastic states, is applied for computing all intensity of a singular near-tip field around the vertex of a class of wedge, encountered in adhesive lap joints under mechanical loading. Numerically we verify that a simple auxiliary field associated with every eigenfunction for the composite wedge under consideration exists in the form of the conjugate solution in the sense of tile M-integral. The auxiliary field is then employed for superposition with the elastic field under consideration, and the associated two-state M-integral is computed via the domain integral technique. This enables us to extract the intensity for a singular field information for a singular elastic boundary layer is extracted form the domain integral representation without resort to singular finite element for the wedge vertex.

  • PDF

Weighted Lp Boundedness for the Function of Marcinkiewicz

  • Al-Qassem, Hussain M.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.31-48
    • /
    • 2006
  • In this paper, we prove a weighted norm inequality for the Marcinkiewicz integral operator $\mathcal{M}_{{\Omega},h}$ when $h$ satisfies a mild regularity condition and ${\Omega}$ belongs to $L(log L)^{1l2}(S^{n-1})$, $n{\geq}2$. We also prove the weighted $L^p$ boundedness for a class of Marcinkiewicz integral operators $\mathcal{M}^*_{{\Omega},h,{\lambda}}$ and $\mathcal{M}_{{\Omega},h,S}$ related to the Littlewood-Paley $g^*_{\lambda}$-function and the area integral S, respectively.

  • PDF

ON THE INTEGRAL CLOSURES OF IDEALS

  • Ansari-Toroghy, H.;Dorostkar, F.
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.653-666
    • /
    • 2007
  • Let R be a commutative Noetherian ring (with a nonzero identity) and let M be an R-module. Further let I be an ideal of R. In this paper, by putting a suitable condition on $Ass_R$(M), we obtain some results concerning $I^{*(M)}$ and prove that the sequence of sets $Ass_R(R/(I^n)^{*(M)})$, $n\;\in\;N$, is increasing and ultimately constant. (Here $(I^n)^{*(M)}$ denotes the integral closure of $I^n$ relative to M.)

WEIGHTED ESTIMATES FOR ROUGH PARAMETRIC MARCINKIEWICZ INTEGRALS

  • Al-Qassem, Hussain Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1255-1266
    • /
    • 2007
  • We establish a weighted norm inequality for a class of rough parametric Marcinkiewicz integral operators $\mathcal{M}^{\rho}_{\Omega}$. As an application of this inequality, we obtain weighted $L^p$ inequalities for a class of parametric Marcinkiewicz integral operators $\mathcal{M}^{*,\rho}_{\Omega,\lambda}\;and\;\mathcal{M}^{\rho}_{\Omega,S}$ related to the Littlewood-Paley $g^*_{\lambda}-function$ and the area integral S, respectively.