This study aimed at investigating the features of m-commerce (mobility, perceived enjoyment, perceived personalization, and habit) that influence consumers' behavioral intents to adopt mobile shopping. To this end, it theorized on and examined the effects of the features of m-commerce that influence consumers' behavioral intents to adopt mobile shopping. The results showed that the most critical drives of m-commerce in mobile shopping are mobility, perceived personalization, and habit. And also we found that habit weakens (moderates) the effects of mobility on the consumers' behavioral intents to adopt mobile shopping. Habit has direct effects on the consumers' behavioral intents to adopt mobile shopping, and these effects are moderated by individual habit.
선행연구를 통해 모바일 특성에 영향을 미치는 변수를 보안성, 위치성, 편이성, 개인혁신성, 인터페이스, 도달성을 도출하고 m-commerce 신뢰와 사용의도에 미치는 과정을 실증적으로 검증하였다. 모바일 특성 하에서 m-commerce 신뢰와 사용의도에 미치는 영향을 중국과 한국 사용자간 차이를 비교하는 것을 목적으로 하고 있으며 연구 결과를 요약하면 다음과 같다. 첫째, 모바일 특성이 m-commerce 신뢰에서는 한국과 중국이 유사한 형태를 나타내지만, m-commerce 사용의도에서는 한국과 중국이 다른 경향을 나타내고 있다. 이는 신뢰개념에서는 한국과 중국이 동일하게 생각되지만, 사용의도개념에서 한국은 모바일 시장이 성숙되었지만 중국은 초기시장이라는 특성이 반영된 것으로 보인다. 둘째, 한국과 중국 사용자의 차이점을 살펴보면 한국의 경우 보안성, 개인혁신성, 도달성이 신뢰에 영향을 미치고 있었다. 그리고 보안성, 위치성, 편이성, 개인혁신성, 인터페이스, 도달성은 사용의도에 영향을 미치고 있었다. 중국의 경우는 개인혁신성이 신뢰에 영향을 미치고 있으며, 편이성이 사용의도에 영향을 미치고 있었다. 따라서 공통적으로 한국과 중국의 모바일 특성에서는 개인혁신성이 신뢰에 중요한 요소로 생각하며, 편이성이 사용의도를 중시하고 있다. 셋째, 한국과 중국 m-commerce에서 모두 신뢰가 사용의도에 영향을 미치는 것으로 나타났다. 신뢰가 높을수록 사용의도가 높아진다고 할 수 있다. 따라서 m-commerce 사용자들의 사용의도를 높이기 위해서는 신뢰를 수용할 수 있는 서비스를 제공할 필요가 있다.
International Journal of Advanced Culture Technology
/
제8권3호
/
pp.148-158
/
2020
With the limited product information available in the m-shopping context, product-naming strategies affect consumer choices by expressing the key product features or the brand's images. Given the increasing dominance of the mobile commerce in consumption across various product categories, few studies have examined the role of product naming in consumer choices in the m-shopping. In filling the research gap, this study empirically analyzes the influence of the perceived diagnosticity of product names in m-shopping on consumer attitude towards the product. Moreover, the study tests the moderating influences of the individual characteristics of consumers (i.e., age, gender, and m-shopping experience) in the dynamics of the perceived diagnosticity impacting the product evaluations. The results of the study using an online survey reveal that the perceived diagnosticity of the product names significantly increases consumer attitude towards the product. Additionally, the moderating effects of gender, age, and m-shopping experience are all found significant: (1) The positive influence of the perceived diagnosticity of the product names is greater for males than for females. (2) The older the respondent, the more statistically significant the positive influence on diagnosticity. (3) The more respondents having m-shopping experience, the more positive the impact of the diagnosticity. Implications and limitations of the study are discussed.
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 위스콘신 유방암(Wisconsin breast cancer)의 진단을 수행하는 퍼지규칙을 추출하고, 비중복면적 분산 측정법을 사용하여 특징입력수를 최소로하는 방안을 제안하고 있다. NEWFM 구조의 중간 부분인 하이퍼박스(hyperbox)들은n 개의 대, 중, 소로 구성된 가중 퍼지소속함수 집합으로 구성되며, 학습 후 각 집합의 대, 중, 소로 구성된 가중 퍼지소속함수는 퍼지집합의 경계합(bounded sum)을 사용하여 다시 하나의 가중 퍼지소속함수로 합성(BSWFM) 된다. n 개의 특징입력(feature input)은 학습된 모든 하이퍼박스에 연결되어 예측 작업을 수행한다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 특징입력을 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화시킨다. 이러한 방법으로 위스콘신 유방암의 9개의 특징입력 중 4개를 사용하여 NEWFM으로 추출된 2개의 퍼지규칙은 99.71%의 예측 인식율을 가지며 이는 퍼지규칙의 수와 인식율에 있어 현재 발표된 논문의 결과보다 우수함을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.538-561
/
2020
Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.
Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.
무선 정보 환경의 변화에 따라 다양한 정보에 대한 풍족감이 요구되고 이에 따라 많은 근거리 무선 통신 기술들이 연구 개발되어 왔으며, 그 중에서도 최근 근거리 무선 통신의 표준으로 각광받고 있는 블루투스와 무선랜은 많은 관심을 받고 있다. 그러나 근거리 무선 통신을 실제 무선 환경에 적용하기엔 많은 문제점들이 제기되고 있다. 따라서 본 논문에서는 현재 근거리 무선 통신의 보안적 취약점 뿐만 아니라 무선 환경이라는 특수한 환경에서 보안적 사항과 사용자의 프라이버시와 밀접한 관계가 있는 비보안적인 사항까지 고려한 일반화된 중앙 집중형 보안 모니터링 기법을 제안한다. 또한 제안된 방식을 근거리 무선 통신의 대표적인 기술인 블루투스와 무선랜에 적용시켜 사용자 중심으로 흩어져 있는 모바일 디바이스에 대한 안전한 보안 모니터링 기법을 제안한다.
Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.