• Title/Summary/Keyword: M-algorithm

Search Result 3,922, Processing Time 0.029 seconds

Extending the SRIV Identification Algorithm to MIMO LMFD Models

  • Akroum, Mohamed;Hariche, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this paper the Simplified Refined Instrumental Variable (SRIV) identification algorithm for SISO systems is extended to MIMO systems described by a Left Matrix Fraction Description (LMFD). The performance of the extended algorithm is compared to the well-known MIMO four-step instrumental variable (IV4) algorithm. Monte Carlo simulations for different signal to noise ratios are conducted to assess the performance of the algorithm. Moreover, the algorithm is applied to a simulated quadruple tank process.

Two dimensional Fast DCT using Polynomial Transform without Complex Computations (복소연산이 없는 Polynomial 변환을 이용한 2차원 고속 DCT)

  • Park, Hwan-Serk;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.127-140
    • /
    • 2003
  • This paper develops a novel algorithm of computing 2 Dimensional Discrete Cosine Transform (2D-DCT) via Polynomial Transform (PT) converting 2D-DCT to the sum of 1D-DCTs. In computing N${\times}$M size 2D-DCT, the conventional row-column algorithm needs 3/2NMlog$_2$(NM)-2NM+N+M additions and 1/2NMlog$_2$(NM) additions and 1/2NMlog$_2$(NM) multiplications, while the proposed algorithm needs 3/2NMlog$_2$M+NMlog$_2$N-M-N/2+2 additions and 1/2NMlog$_2$M multiplications The previous polynomial transform needs complex operations because it applies the Euler equation to DCT. Since the suggested algorithm exploits the modular regularity embedded in DCT and directly decomposes 2D DCT into the sum of ID DCTs, the suggested algorithm does not require any complex operations.

Optimal Sequence Alignment Algorithm Using Space Division Technique (공간 분할 방법을 이용한 최적 서열정렬 알고리즘)

  • Ahn, Heui-Kook;Roh, Hi-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.397-406
    • /
    • 2007
  • The problem of finding an optimal alignment between sequence A and B can be solved by dynamic programming algorithm(DPA) efficiently. But, if the length of string was longer, the problem might not be solvable because it requires O(m*n) time and space complexity.(where, $m={\mid}A{\mid},\;n={\mid}B{\mid}$) For space, Hirschberg developed a linear space and quadratic time algorithm, so computer memory was no longer a limiting factor for long sequences. As computers's processor and memory become faster and larger, a method is needed to speed processing up, although which uses more space. For this purpose, we present an algorithm which will solve the problem in quadratic time and linear space. By using division method, It computes optimal alignment faster than LSA, although requires more memory. We generalized the algorithm about division problem for not being divided into integer and pruned additional space by entry/exit node concept. Through the proofness and experiment, we identified that our algorithm uses d*(m+n) space and a little more (m*n) time faster than LSA.

Performance-based Channel Scheduler for AMC/TDM Wireless Network System (AMC/TDM 무선 데이터 통신에서의 성능보장형 채널스케줄러)

  • 이종훈;김동구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.586-592
    • /
    • 2002
  • In this paper, new channel scheduling algorithms which reduce transmission delay caused by wireless network are proposed in AMC/TDM wireless data communication. The concept of the Proposed algorithms is based on the proportional fairness, M-LWDF, and performance-guaranteeing algorithm proposed by Xin Liu. The proposed algorithm can be applied to QoS guaranteeing services as well as best-effort services. Simulation results show that new algorithm reduced transmission delay upto 11.5% in case of proportional fairness algorithm and also decreased transmission delay unto 9% in case of M-LWBF algorithm.

Performance Evaluation of the M-algorithm for Decoding Convolutional Codes (M-알고리듬을 이용한 컨벌루셔널 부호의 복호 성능 평가)

  • 천진영;최규호;성원진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.188-195
    • /
    • 2002
  • The M-algorithm for decoding convolutional codes can significantly reduce the complexity of the Viterbi algorithm by tracking a fixed number of survivor paths in each level of the decoding trellis. It is an easily-implementable algorithm suited for real-time processing of high-speed data. The algorithm, however, generates a sequence of catastrophic errors when the correct path is not included in the set of survivor paths. In this paper, the performance of the M-algorithm obtained from using various decoding complexity levels, frame lengths, and code constraint lengths is presented. The performance gain is quantified when the algorithm is used in conjunction with codes of increased constraint length. In particular, it is demonstrated the gain from the increased code free distance overcompensates the loss from the correct path being excluded from the survivors, when the frame length is short to moderate. Using 64 survivor paths, the signal-to-noise ratio gain obtained by increasing the constraint length from K=7 to K=9, 11, 15 is respectively 0.6, 0.75, and 08dB, when the frame of length L=100 has the frame error rate of 0.01%.

Multiple Parallel-Pollard's Rho Discrete Logarithm Algorithm

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.29-33
    • /
    • 2015
  • This paper proposes a discrete logarithm algorithm that remarkably reduces the execution time of Pollard's Rho algorithm. Pollard's Rho algorithm computes congruence or collision of ${\alpha}^a{\beta}^b{\equiv}{\alpha}^A{\beta}^B$ (modp) from the initial value a = b = 0, only to derive ${\gamma}$ from $(a+b{\gamma})=(A+B{\gamma})$, ${\gamma}(B-b)=(a-A)$. The basic Pollard's Rho algorithm computes $x_i=(x_{i-1})^2,{\alpha}x_{i-1},{\beta}x_{i-1}$ given ${\alpha}^a{\beta}^b{\equiv}x$(modp), and the general algorithm computes $x_i=(x_{i-1})^2$, $Mx_{i-1}$, $Nx_{i-1}$ for randomly selected $M={\alpha}^m$, $N={\beta}^n$. This paper proposes 4-model Pollard Rho algorithm that seeks ${\beta}_{\gamma}={\alpha}^{\gamma},{\beta}_{\gamma}={\alpha}^{(p-1)/2+{\gamma}}$, and ${\beta}_{{\gamma}^{-1}}={\alpha}^{(p-1)-{\gamma}}$) from $m=n={\lceil}{\sqrt{n}{\rceil}$, (a,b) = (0,0), (1,1). The proposed algorithm has proven to improve the performance of the (0,0)-basic Pollard's Rho algorithm by 71.70%.

Adaptive Control of D.C. Motor Speed Using W.L.S. Algorithm (W.L.S. 알고리즘을 사용한 직유전동기 속도의 적응제어)

  • Park, Jun;Kwon, Key-Ho;Choi, Kye-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.31-36
    • /
    • 1983
  • The indirect M.R.A.C. method using the W.L.S. algorithm is applied to the speed control of a D.C. motor on the assumption that the motor is the 1-st order, completely controllable and observable, non-minimum phase plant. By the help of M6809 microprocessor system the experiments are performed with respect to the sinusoidal and square reference input. The results show that the speed of a D.C. motor is well controlled by the indirect M.R.A.C. method using W.L.S, algorithm, and that the W.L.S. algorithm is quite suitable to the time-varying plant.

  • PDF

Speed Control of Soccer Robot Using messy Genetic Algorithm (mGA를 이용한 축구 로봇의 속도 제어)

  • Kim, Jung-Chan;Joo, Young-Hoon;Park, Hyun-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.590-595
    • /
    • 2003
  • In this paper, we propose a new method to the speed control of soccer robot using messy Genetic Algorithm(mGA). In order to arrive in the target of the soccer robot within the smallest time ,we propose the speed control function with several parameters which represent the reflection ratio distance and angle error. Also, we propose the algorithm for searching these parameters by using messy Genetic Algorithm. As a result of finding the optimal parameters, we can move the robot the most quickly in the target under the complex environment.

A New Complexity Analysis of the SymMerge Algorithm (SymMerge 알고리즘의 새로운 복잡도 분석)

  • Kim, Pok-Son
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.515-521
    • /
    • 2015
  • The SymMerge algorithm is an efficient merging algorithm for input sequences u and v of sizes $\left|u \right|=m$ and $\left|v \right|=n$, $m{\leq}n$. We consider complexity analysis for SymMerge algorithm regarding to the required number of comparisons. The focus of the previous complexity analysis was on finding the values of upper bounds, i.e. showing the asymptotical optimality. In this paper, in a different way from the previous complexity analysis, we show that the overall required number of comparisons for two representative special cases "symmetric case" and "maximum spanning case" can be calculated exactly i.e. the least upper bounds regarding to the required number of comparisons are calculated. Symmerge requires exactly $m\;log\frac{n}{m}+4m-logm-3$ comparisons for symmetric case of sizes $m=2^k,\;n=2^l,l{\geq}k$ of input sequences and exactly $\frac{1}{2}m^2+(m+1)logm-\frac{3}{2}m+2$ comparisons for maximum spanning case of sizes $m=2^k,n=2^m-m$ of input sequences. Additionally we show that the complexity of the Symmerge algorithm regarding to the overall required number of comparisons for these special cases can be defined by recurrence relations.

Low Complexity QRD-M MIMO Detection Algorithm Based on Adaptive Search Area (적응형 검색 범위 기반 복잡도 감소 QRD-M MIMO 검출 기법)

  • Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.614-623
    • /
    • 2008
  • A very low complexity QRD-M algorithm based on adaptive search area is proposed for MIMO systems. The conventional QRD-M scheme extends each survivor paths to all constellation symbols at each layer and selects M paths of minimum path metrics. We found that performance will not be degraded even if we adaptively restrict the survivor path extension only to the neighboring points of temporary detection symbol according to the channel condition at each layer. By employing this feature, we propose a new QRD-M algorithm achieving the near MLD performance with a reduced complexity. We employ the channel gain ratio among the layers as a channel condition indicator, which does not require SNR estimation. The simulation results show that the proposed scheme effectively achieves near MLD performance while maintaining the overall average computation complexity much smaller than the conventional QRD-M algorithm.