• Title/Summary/Keyword: M/M/m retrial queue

Search Result 24, Processing Time 0.023 seconds

AN APPROXIMATION FOR THE DISTRIBUTION OF THE NUMBER OF RETRYING CUSTOMERS IN AN M/G/1 RETRIAL QUEUE

  • Kim, Jeongsim;Kim, Jerim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.405-411
    • /
    • 2014
  • Queueing systems with retrials are widely used to model many problems in call centers, telecommunication networks, and in daily life. We present a very accurate but simple approximate formula for the distribution of the number of retrying customers in the M/G/1 retrial queue.

ANALYSIS OF M/M/c RETRIAL QUEUE WITH THRESHOLDS, PH DISTRIBUTION OF RETRIAL TIMES AND UNRELIABLE SERVERS

  • CHAKRAVARTHY, SRINIVAS R.;OZKAR, SERIFE;SHRUTI, SHRUTI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.173-196
    • /
    • 2021
  • This paper treats a retrial queue with phase type retrial times and a threshold type-policy, where each server is subject to breakdowns and repairs. Upon a server failure, the customer whose service gets interrupted will be handed over to another available server, if any; otherwise, the customer may opt to join the retrial orbit or depart from the system according to a Bernoulli trial. We analyze such a multi-server retrial queue using the recently introduced threshold-based retrial times for orbiting customers. Applying the matrix-analytic method, we carry out the steady-state analysis and report a few illustrative numerical examples.

TRANSIENT DISTRIBUTIONS OF LEVEL DEPENDENT QUASI-BIRTH-DEATH PROCESSES WITH LINEAR TRANSITION RATES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.83-100
    • /
    • 2000
  • Many queueing systems such as M/M/s/K retrial queue with impatient customers, MAP/PH/1 retrial queue, retrial queue with two types of customers and MAP/M/$\infty$ queue can be modeled by a level dependent quasi-birth-death(LDQBD) process with linear transition rates of the form ${\lambda}_k$={\alpga}{+}{\beta}k$ at each level $\kappa$. The purpose of this paper is to propose an algorithm to find transient distributions for LDQBD processes with linear transition rates based on the adaptive uniformization technique introduced by van Moorsel and Sanders [11]. We apply the algorithm to some retrial queues and present numerical results.

Sensitivity of M/M/c Retrial Queue with Respect to Retrial Times : Experimental Investigation (M/M/c 재시도대기체계에서 재시도시간의 민감성에 대한 실험적 고찰)

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • The effects of the moments of the retrial time to the system performance measures such as blocking probability, mean and standard deviation of the number of customers in service facility and orbit are numerically investigated. The results reveal some performance measures related with the number of customers in orbit can be severely affected by the fourth or higher moments of retrial time.

THE M/G/1 FEEDBACK RETRIAL QUEUE WITH TWO TYPES OF CUSTOMERS

  • Lee, Yong-Wan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.875-887
    • /
    • 2005
  • In M/G/1 retrial queueing system with two types of customers and feedback, we derived the joint generating function of the number of customers in two groups by using the supplementary variable method. It is shown that our results are consistent with those already known in the literature when ${\delta}_k\;=\;0(k\;=\;1,\;2),\;{\lambda}_1\;=\;0\;or\;{\lambda}_2\;=\;0$.

MMPP,M/G/1 retrial queue with two classes of customers

  • Han, Dong-Hwan;Lee, Yong-Wan
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.481-493
    • /
    • 1996
  • We consider a retrial queue with two classes of customers where arrivals of class 1(resp. class 2) customers are MMPP and Poisson process, respectively. In the case taht arriving customers are blocked due to the channel being busy, the class 1 customers are queued in priority group and are served as soon as the channel is free, whereas the class 2 customers enter the retrial group in order to try service again after a random amount of time. We consider the following retrial rate control policy, which reduces their retrial rate as more customers join the retrial group; their retrial times are inversely proportional to the number of customers in the retrial group. We find the joint generating function of the numbers of custormers in the two groups by the supplementary variable method.

  • PDF

BUSY PERIOD DISTRIBUTION OF A BATCH ARRIVAL RETRIAL QUEUE

  • Kim, Jeongsim
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.425-433
    • /
    • 2017
  • This paper is concerned with the analysis of the busy period distribution in a batch arrival $M^X/G/1$ retrial queue. The expression for the Laplace-Stieltjes transform of the length of the busy period is well known, but from this expression we cannot compute the moments of the length of the busy period by direct differentiation. This paper provides a direct method of calculation for the first and second moments of the length of the busy period.

{M_1},{M_2}/M/1$ RETRIAL QUEUEING SYSTEMS WITH TWO CLASSES OF CUSTOMERS AND SMART MACHINE

  • Han, Dong-Hwan;Park, Chul-Geun
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.393-403
    • /
    • 1998
  • We consider $M_1,M_2/M/1$ retrial queues with two classes of customers in which the service rates depend on the total number or the customers served since the beginning of the current busy period. In the case that arriving customers are bloced due to the channel being busy, the class 1 customers are queued in the priority group and are served as soon as the channel is free, whereas the class 2 customers enter the retrical group in order to try service again after a random amount of time. For the first $N(N \geq 1)$ exceptional services model which is a special case of our model, we derive the joint generating function of the numbers of customers in the two groups. When N = 1 i.e., the first exceptional service model, we obtain the joint generating function explicitly and if the arrival rate of class 2 customers is 0, we show that the results for our model coincide with known results for the M/M/1 queues with smart machine.

  • PDF

AN ALGORITHMIC APPROACH TO THE MARKOV CHAIN WITH TRANSITION PROBABILITY MATRIX OF UPPER BLOCK-HESSENBERG FORM

  • Shin, Yang-Woo;Pearce, C.E.M.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.403-426
    • /
    • 1998
  • We present an algorithm to find an approximation for the stationary distribution for the general ergodic spatially-inhomogeneous block-partitioned upper Hessenberg form. Our approximation makes use of an associated upper block-Hessenberg matrix which is spa-tially homogeneous except for a finite number of blocks. We treat the MAP/G/1 retrial queue and the retrial queue with two types of customer as specific instances and give some numerical examples. The numerical results suggest that our method is superior to the ordinary finite-truncation method.