• Title/Summary/Keyword: M/G ratio

Search Result 2,459, Processing Time 0.033 seconds

Production of D-Lactic Acid from DL-Lactonitrile by Pseudomonas sp. (Pseudomonas sp.에 의한 DL-Iactonitrile로부터 D-lactic acid의 생산)

  • 김현수;황인균;정남현;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • By using DL-acetonitrile as enzyme inducer, 90 bacteria were isolated from a field soil. Among the isolated strains, the strain WJ-003 showed the highest activity for production of D-lactic acid from DL-lactonitrile, and was partially identified as Pseudomonas sp. The production condition of D-lactic acid from DL-lactonitrile using resting cells as an enzyme source was optimized as follows: the reaction mixture contained 10 mM of DL-lactonitrile, 20 g of wet cells in 11 of 20 mM potassium phosphate buffer (pH 7.0) and the reaction was carried out at $30^{\circ}C$. After 18 h of reaction, 0.843 g/l of D-lactic acid was produced which corresponded to a conversion ratio of 93.7% and an optical purity of 99.8%. Additionally, when 10 mM of DL-lactonitrile was added once more to the reaction mixture at 14 h, 1.64 g/1 of D-lactic acid was produced after 28 h. In this experiment, the conversion ratio was 91.1% and optical purity 99.8%.

Atomization Characteristics of Shear Coaxial Injectors (전단 동축형 인젝터의 미립화 특성에 관한 연구)

  • 정원호;김동준;임지혁;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.168-172
    • /
    • 2003
  • The effects of injection conditions on the droplet sizes resulting from the disintegration of a liquid jet by a fast annular gas stream have been investigated using PDPA. The gas/liquid momentum ratio M = $\rho$$_{g}$ $U_{g}$$^2$/$\rho$$_1$ $U_1$$^2$ and Weber number We = $\rho$$_{g}$ $g^2$ $D_1$/$\sigma$ are selected as key parameters in atomization of shear coaxial spray from the fluid mechanics standpoint. It is revealed that SMD( $D_{32}$) varies inversely with gas/liquid momentum ratio(M), whereas Weber number(We) has little effect on the droplet sizes as gas velocities increase. It is found that gas/liquid momentum ratio is more dominant factor controlling the breakup and atomization process of shear coaxial spray. Finally, an empirical correlation between SMD and injection conditions(i.e. gas/liquid momentum ratio M and Weber number We) is proposed based on the experimental results.

  • PDF

CLINICAL AND IMMUNOGENETIC STUDY ON THE EARLY-ONSET PERIODONTITIS (조기발병형 치주염의 임상적 및 면역유전학적 연구)

  • Kim, Jun-Hong;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.568-586
    • /
    • 1995
  • 542 periodontal patients having early-onset periodontitis(EOP) have been reclassified into a more homogeneous phenotypic subsets by newly revised radiographic criteria. Representative patients of each EOP subform have been examined of serum IgG subclass antibodies against periodontopathic bacteria, Porphyromonas gingivalis(Pg) 381 and of genetic markers for IgG allotypes to clarify the relationship between these parameters and phenotype expression of each subform. The early onset periodontitis could be reclassified by the radiographic parameters combining the mean interproximal alveolar bone loss(BL) and the radiographic ratio(between 1st molars and the adjacent teeth: Ratio) with statistical significance(p<0.001 by MANOVA). Moreover these EOP subforms could clearly be delineated from adult periodontitis. Of subform I and II(localized type EOP) patients with minimal mean bone loss(BL<5.0), patients demonstrating disease activities in localized areas(Ratio.>1.5) showed the elevated responses in all the IgG subclasses against Pg compared with those of patients without disease activity(Ratio <1.5). There were gradual increase in the IgG2 and IgG4 titers against Pg as the disease developed into the generalized forms suggesting the possible role of these antibodies in modulating the phenotype expression. The genetic marker study for IgG allotype revealed that mean IgG2 and IgG4 subclass titers were significantly higher(p<0.01, p<0.05, respectively) in patients who were positive for G2m(n). This indicated that IgG subclass responsiveness against the bacterial antigens are under the immnuogenetic control. The observed frequencies of G2m(n) were significantly higher (p<0.05) in subfrom IV patients who had the characteristic features of classical rapidly progressing periodontitis indicating the possible genetic predisposition in these patients.

  • PDF

Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion

  • Islam, Mohammad Nazrul;Park, Keum-Joo;Yoon, Hyung-Sun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.100-105
    • /
    • 2012
  • Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic digestion system. Methods: Anaerbic digestion test was performed using a lab scale batch reactor at $35^{\circ}C$ for six different feed to inoculum (F/I) ratios (0.50, 0.72, 1.14, 1.50, 2.14 and 3.41), three food waste to swine manure ratios (100:0, 60:40 and 40:60) with two different loading concentrations (10g VS/L and 30g VS/L). Results: For food waste only, the highest biogas yield of 1008 mL/gVS was obtained at 0.50 of F/I. For the co-digestion of food waste and swine manure mixture, the highest biogas yield of 1148 mL/gVS was obtained at a mixing ratio of 40:60 with loading concentration of 10g VS/L. Conclusions: F/I ratio for the food waste only, mixing ratio of food waste and swine manure, and co-substrate loading rate affected the biogas production rate. For the low loading rate, there was not so much difference according to the mixing ratio of food waste and swine manure, but for the high loading rate higher biogas yield was acquired for the co-digestion of food waste and swine manure than for the food waste alone (mixing ratio, 100:0).

Study on the Isomeric Ratio by Thermal Neutron Activation

  • Bak, Hae-Ill
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 1974
  • The cross-section ratios of the nuclear isomeric pairs $^{80}$ B $r^{m, g}$, sup 81/S $e^{m, g}$, $^{104}$ R $h^{m, g}$, $^{116}$ I $n^{m, g}$ and $^{134}$ C $s^{m, g}$ through the radiative thermal neutron capture process have been studied. The experimental values of these ratios obtained by the activation method have been compared with the calculated ones deduced from the modified Huizenga-Vandenbosch method. Agreement between these values within 30% could be attained by controlling the spin cut-off parameter and gamma-ray multiplicity.

  • PDF

Effects of Whole Body Ultraviolet -Light Irradiation on Serum Protein in Snake Head, Ophicephalus argus(CANTOR) (가물치의 혈청단백질에 미치는 자외선전신조사의 영향)

  • 남상열;이재문;최미자;이향순
    • The Korean Journal of Zoology
    • /
    • v.7 no.2
    • /
    • pp.6-12
    • /
    • 1964
  • The present paper deals with the changes in serum protein fraction, total serum protein, hematocrit, red blood cell, haemoglobin, and weight of liver or kidney : body weight ratio of irradiated and non-irradiated snake head, Ophicephalus argus(CANTOR) . Irrardiation doses are 2537$\AA$-7 minutes (7M) and 2537$\AA$-15 minutes (15M). Serum electrophoretic patterns showed a marked decrease in albumin fraction at 1, 3, 9, 12 and 15 days on 7M group and 15 M group. On both experimental groups percentage increases in $\alpha$1 and $\beta$ fractions occurred at different time periods in general but are interpreted as only apparent changes accompanying the greater albumin fall. ${\gamma}$-Globulin decreased at 1, 6 and 15 days on 7M group. and at 1, 3, 6 and 9 days on 15M group. Also, A/G ratio was significantly low in groups subjected to above conditions as compared to the controls. A/G ratio decreased at 3 and 15 days remarkably on both groups. On the average, the reductions in the A/G ratio were not proportional to themagnitude of ultraviolet-light. Total protein of serum changed according to suggestive changes in electrophoretic patterns of serum . Total protein of serum declined at 1, 3, 6, 9 and 12 day periods on 7M groups and at 1, 3, 9, 12 and 15 day-periods on 15 M group, and increased approaching control values at 15 and 18 day-periods on both groups. Hematocrit increased remarkably at 1, 3, 6 and 12 days and decreased at 9 and 15 days on 7M group, and increased throughout the sampling period on 15M . Red blood cell decreased throughout the sampling period and increased slightly at 6 days on 7 M group and decreased at 1, 6, 9, 15 and 18 days and increased remarkably at 3 and 12 days on 15M group. Hemoglobin decreased remarkably at 1 day-period and increased at other days on both groups. The liver weight was not remarkably changed after whole body irradiation on both groups. and kidney was increased from 1st day on 7M group and 3 rd day on 15M group respectively. It appears that changes in electropphoretic patterns of serum, A/G ratio, total protein of serum, hematocrit, red blood cell, hemoglobin, and liver or kidney weight act to the detriment of the animal following non-ionizing irradiation.

  • PDF

Distribution of Quinolones (Ciprofloxacin, Norfloxacin and Oxolinic acid) after Oral Administration in Carp (Cyprinus carpio) (잉어에 있어서 Quinolones (Ciprofloxacin, Norfloxacin 및 Oxolinic acid)의 경구투여에 따른 장기내 분포상)

  • Choi, Min-Soon;Park, Kwan-Ha
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.269-276
    • /
    • 2005
  • The concentrations of quinolones (oxolinic acid; OXA, norlloxacin: NRF & ciprofloxacin: CPF) after oral administration of single doses (20 mg/kg B.W.) were investigated in carp (Cyprinus carpio) kept in freshwater at 20-23$^{\circ}C$. The distribution of the drug was studied after treatment. At points timed, from 1 h to 96 hrs after administration, blood (B), liver (L), kidney (K) and muscle (M) from 5 individuals in each group were collected for analyse with microbiological bioassay method. The peak concentrations were measured at 8 h (L), 12 h (B and K) and 24 h (M) after administration regardless of treated drugs. Considerably high concentrations of CPF (13.8-19.6${\mu}g/m{\ell}$) NRF (11.8-16.9${\mu}g/m{\ell}$) and OXA (10.8-13.9 ${\mu}g/m{\ell}$) were revealed during the 24 h. At the last time point of the experiment (96 h), concentrations of all three quinolones were: OXA, 2.3-6.3 ${\mu}g/m{\ell}$ ; NRF, 3.1-4.5 ${\mu}g/m{\ell}$ ; CPF, 3.0-5.5${\mu}g/m{\ell}$ in samples. The concentrations decreased subsequently, indicating a first rapid redistribution, followed by a slow phase of elimination. The steady state was observed in blood (12-36 h), liver (12-96 h) and muscle (36-96 h) after the initiation of treatment with OXA. Concerning the compartmental concentrations, (L, K. and M/B concentration ratio), the fluctuation of the ratio was founded at different time points, among drugs. For CPF, highest tissue ratios were prolonged in the order of L>K>M (0.65-1.2/0.82-0.93/1.0-1.7) during the experiments. On the other hand, NRF presented L>K>M (0.65-1.3/0.86-1.0) till 24 h, but L>M>K (0.89-1.26) at 36-96 h. OXA showed L>K>M (0.95-2.1) at 1-8 h, M>K>L (0.51-1.0) at 12-36 hand M>L>K (1.0-2.3) at 48-96 h, respectively.

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Optimization of Ethanol Extraction of $\gamma$-oryzanol and Other Functional Components from Rice Bran (미강의 $\gamma$-oryzanol 및 생리활성물질의 에탄올 추출공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.281-289
    • /
    • 2010
  • We determined the optimum ethanolic conditions for extraction of $\gamma$-oryzanol and other functional components from rice bran, using response surface methodology (RSM). A central composite design was used to investigate the effects of the independent variables of solvent ratio ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$), on dependent variables including yield ($Y_1$), total phenolic content ($Y_2$), electron-donating activity ($Y_3$), ferulic acid level ($Y_4$), and $\gamma$-oryzanol concentration ($Y_5$). Solvent ratio and extraction temperature were the most important factors in extraction. The maximum yield was at 22.56 mL/g ($X_1$), 78.19C ($X_2$), and 522.15 min ($X_3$), at the saddle point. Total phenolic levels were little affected by solvent ratio or extraction temperature. The maximum concentration of extracted total phenolics was 90.78mg GAE/100 g at 21.26 mL/g, $94.65^{\circ}C$, and 567.97 min. A maximum electron-donating ability of 54.72% was obtained with the parameters 20.20 mL/g,$81.89^{\circ}C$, and 701.87 min, at the highest point. The maximum level of ferulic acid components was 210.47 mg/100g at 5.22 mL/g, $79.66^{\circ}C$, and 575.24 min. In addition, the maximum $\gamma$-oryzanol concentration was 660.39 mg/100g at 5.10 mL/g, $81.83^{\circ}C$, and 587.39 min. The optimum extraction conditions were a solvent ratio of 10.45 mL/g, $80^{\circ}C$ extraction temperature, and 535 min extraction time. Predicted extraction levels under optimized conditions were in line with experimental values.