Optimization of Ethanol Extraction of $\gamma$-oryzanol and Other Functional Components from Rice Bran

미강의 $\gamma$-oryzanol 및 생리활성물질의 에탄올 추출공정 최적화

  • Jo, In-Hee (Department of Food Science & Technology, Kyungpook National University) ;
  • Choi, Yong-Hee (Department of Food Science & Technology, Kyungpook National University)
  • 조인희 (경북대학교 식품공학과) ;
  • 최용희 (경북대학교 식품공학과)
  • Received : 2009.12.17
  • Accepted : 2010.04.02
  • Published : 2010.04.30

Abstract

We determined the optimum ethanolic conditions for extraction of $\gamma$-oryzanol and other functional components from rice bran, using response surface methodology (RSM). A central composite design was used to investigate the effects of the independent variables of solvent ratio ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$), on dependent variables including yield ($Y_1$), total phenolic content ($Y_2$), electron-donating activity ($Y_3$), ferulic acid level ($Y_4$), and $\gamma$-oryzanol concentration ($Y_5$). Solvent ratio and extraction temperature were the most important factors in extraction. The maximum yield was at 22.56 mL/g ($X_1$), 78.19C ($X_2$), and 522.15 min ($X_3$), at the saddle point. Total phenolic levels were little affected by solvent ratio or extraction temperature. The maximum concentration of extracted total phenolics was 90.78mg GAE/100 g at 21.26 mL/g, $94.65^{\circ}C$, and 567.97 min. A maximum electron-donating ability of 54.72% was obtained with the parameters 20.20 mL/g,$81.89^{\circ}C$, and 701.87 min, at the highest point. The maximum level of ferulic acid components was 210.47 mg/100g at 5.22 mL/g, $79.66^{\circ}C$, and 575.24 min. In addition, the maximum $\gamma$-oryzanol concentration was 660.39 mg/100g at 5.10 mL/g, $81.83^{\circ}C$, and 587.39 min. The optimum extraction conditions were a solvent ratio of 10.45 mL/g, $80^{\circ}C$ extraction temperature, and 535 min extraction time. Predicted extraction levels under optimized conditions were in line with experimental values.

본 연구에서는 미강의 지용성 생리활성 물질인 $\gamma$-oryzanol과 그 모핵인 ferulic acid를 ethanol을 용매로 효율적으로 추출하고자 반응표면분석법을 이용하여 최적 추출 조건을 설정하였다. 중심합성계획법에 따라 추출조건의 독립변수를 시료에 대한 용매비($X_1$), 추출 온도($X_2$), 추출 시간($X_3$)으로 하고 이에 따라 영향을 받는 종속변수로 추출 수율($Y_1$), 총페놀 함량($Y_2$), 전자공여능($Y_3$), 미강의 지용성 생리활성물질인 ferulic acid 함량($Y_4$)과 $\gamma$-oryzanol 함량($Y_5$)을 설정하였다. 추출 수율은 추출조건이 시료에 대한 용매비 22.56 mL/g ($X_1$), 추출 온도 $78.19^{\circ}C$ ($X_2$), 추출 시간 522.15 min ($X_3$)일 때 최대값 42.03%를 나타내었다. 총페놀 함량의 최대값은 90.78 mg GAE/100 g이었으며, 이때의 추출 조건은 시료에 대한 용매비 21.26 mL/g, 추출온도 $94.65^{\circ}C$, 추출시간 567.97 min이었고, 전자공여능은 시료에 대한 용매비 20.20 mL/g, 추출온도 $81.89^{\circ}C$, 추출 시간 701.87 min일 때 최대값 54.72%를 나타내었다. 그리고 ferulic acid 함량의 최대값은 시료에 대한 용매비 5.22 mL/g, 추출 온도 $79.66^{\circ}C$, 추출 시간 575.24 min일 때 210.47 mg/100g이었고 $\gamma$-oryzanol 함량은 시료에 대한 용매비 5.10 mL/g, 추출온도 $81.83^{\circ}C$, 추출시간 587.39 min에서 최대값 660.39 mg/100g를 나타내었다. 실험결과 모든 종속변수들은 시간보다는 시료에 대한 용매비와 추출온도에 영향을 많이 받았다. 특히 미강의 지용성 생리활성물질인 ferulic acid와 $\gamma$-oryzanol은 온도가 약 $80^{\circ}C$보다 높아지면 추출함량이 감소하는데 이는 온도가 높아짐에 따라 추출용매의 증발과 같은 손실때문인 것으로 사료된다. 이들 특성을 모두 만족시키는 최적 추출조건은 시료에 대한 용매비 10.45 mL/g, 추출온도 $80^{\circ}C$, 추출시간 535 min으로 예측되었다. Ethanol 역시 isopropanol 과 같이 hexane의 대체용매로서 미강의 추출 용매로 적합하다고 사료된다.

References

  1. Okada, T. and Yamaguchi, N. (1983) Antioxidant effect and pharmacology of oryzanol. J. Jpn. Oil Chem. Soc., 32, 305-310 https://doi.org/10.5650/jos1956.32.305
  2. Rukmini, C. (1988) Chemical, nutritional and toxicological studies of rice bran oil. Food Chem., 30, 257-268 https://doi.org/10.1016/0308-8146(88)90112-4
  3. Kwak, T.S. and Park, H.J. (1997) Quantitative analysis of $\gamma$-oryzanol in rice bran. Korean J. Med. Crop Sci., 5, 113-118
  4. Ishitani, A. (1980) Oryzanol antioxidant for food. JPN. Kokai Tokko Kobo JP 80, 50, 094 (C.A-93:112560)
  5. Nicolosi, R.J., Rogers, E.J., Ausman, L.M. and Orthoefer, F.T. (1993) Rice bran oil and its health benefits. In Rice Science and Technology Marshall, W. E., Wadsworth, J. I., Eds.. Dekker, New York, p. 421
  6. Rukmini, C. and Raghuram, T.C. (1991) Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil: a review. J. Am. CoIl. Nutr., 10, 593-601
  7. Seetharamaiah, G.S. and Chandrasekhara, N. (1989) Studies on hypocholesterolemic activity of rice bran oil. Atherosclerosis, 78, 219-223 https://doi.org/10.1016/0021-9150(89)90226-8
  8. Duve, J.K. and White, P.J. (1991) Extraction and identification of antioxidants in oats. J. Am. Oil Chem. Soc., 68, 365-370 https://doi.org/10.1007/BF02663751
  9. Hikino, H., Takahashi, M., Oshima, Y. and Konno, C. (1987) Isolation and hypoglycemic antivity of oryzabrans A, B, C and D, Glycans of Oryza sativa Bran. Planta Med., 49, 1-3
  10. Andreasen, M.F., Landbo, A.K., Christensen, L.P., Hansen, A. and Mayer, A.S. (2001) Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydroxydimers on human low-density lipoproteins. J. Agric. Food Chem., 49, 4090-4096 https://doi.org/10.1021/jf0101758
  11. Ohta, T., Semboku, N., Kuchii, A., Egashira, Y. and Sanada, H. (1997) Antioxidant activity of com bran cell-wall fragments in LDL oxidation system. J. Agric. Food Chem., 45, 1644-1648 https://doi.org/10.1021/jf960558j
  12. Ogiwara, T., Satoh, K., Murakami, Y., Unten, S., Atsu, T., Sakagami, H. and Fujisawa, S. (2002) Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res., 22, 2711-2717
  13. Balasubashini, M.S., Rukkumani, R. and Menon, V.P. (2003) Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol., 40, 118-122 https://doi.org/10.1007/s00592-003-0099-6
  14. Johnson, L.A. and Lusas, E.W. (1983) Comparison of alternative solvents for oils extraction. J. Am. Oil Chem. Soc., 60, 229-242 https://doi.org/10.1007/BF02543490
  15. World Health Organization (1991) Health and Safety Guide No. 59 : n-Hexane health and safety guide. Geneva, p.29
  16. Hu, W., Wells, J.H., Shin, T.S. and Godber, J.S. (1996) Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. J. Am. Oil Chem. Soc., 73, 1653-1656 https://doi.org/10.1007/BF02517967
  17. Renuka, D. and Arumughan, C. (2007) Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresour. Technol., 98, 3037-043 https://doi.org/10.1016/j.biortech.2006.10.009
  18. Lusas, E.W., Watkins, L.R. and Koseoglu, S.S. (1991) Isopropyl alcohol to be tested as solvent. INFORM 2, p. 970-976
  19. Gontard, N., Guilbert, S. and Cug, J.L. (1992) Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci., 57, 190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  20. Amerine, M.A. and Ough, C.S. (1980) Methods for analysis of musts and win. Wiley & Sons, New York, p.176-180
  21. Bios, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  22. Xu, Z., Hua, N. and Godber, J.S. (2000) Comparison of supercritical fluid and solvent extraction methods in extracting $\gamma$-oryzanol from rice bran. J. Am. Oil Chem. Soc., 77, 547-551 https://doi.org/10.1007/s11746-000-0087-4
  23. Lee, J.W., Lee, S.K., Do, J.H., Sung, H.S. and Shin, K.W. (1995) Browning reaction of fresh ginseng(Panax ginseng C.A. Meyer) as affected by heating temperature. Korean J. Ginseng Sci., 19, 249-253
  24. Marinova, E.M. and Yanishlieva, N.V. (1994) Effect of lipid unsaturation on the antioxidative activity of some phenolic acids. J. Am. Oil Chem. Soc., 71, 427-434 https://doi.org/10.1007/BF02540525
  25. Lilitchan, S., Tangprawat, C., Aryusuk, K., Krisnangktura, S., Chokmoh, S., Krisnangkura, K. (2008) Partial extraction method for the rapid analysis of total lipids and $\gamma$-oryzanol contents in rice bran. Food Chem., 106, 752-59 https://doi.org/10.1016/j.foodchem.2007.06.052
  26. Nenadis N, Tsimidou M. (2002) Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH) tests. J. Am. Oil Chem. Soc., 79, 1191-1195 https://doi.org/10.1007/s11746-002-0626-z