• Title/Summary/Keyword: M/F ratio

Search Result 1,004, Processing Time 0.028 seconds

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR) (생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성)

  • Jeong, Seong-Jin;Seo, Gyu-Tae;Lee, Taek-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

Effects of Resin Compositions and Additives on Gelation Properties and Bonding Characteristics of Urea-Melamine-Formaldehyde resin adhesives (요소·멜라민 수지 접착제의 겔화성 및 접착특성에 미치는 수지조성과 첨가물의 영향)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.72-78
    • /
    • 1999
  • To accelerate the curing and to improve the bonding properties of urea-melamine-formaldehyde (UMF) resin adhesives for plywood, the effects of resin compositions and additives on gelation time and bonding strength were discussed. The gelation time of UMF resin prepared by simultaneous reaction with urea(U), melamine(M) and formaldehyde(F) at M/U molar ratio 0.2 was shortened as the molar ratio of formaldehyde to urea was increased. However, at F/U molar ratios higher than 2.5, the amounts of free fomaldehyde of resin could not satisfy with KS standard, Therefore, it was difficult to increase the amount of formaldehyde in resin composition for the purpose of fast gelation time. With increasing the molar ratio of melamine to urea(M/U) from 0.3 to 0.6 at constant F/U molar ratio 3.4, the gelation time of UMF resin was slightly decreased, while gradually increased at M/U molar ratio higher than 0.6. The gelation properties of UMF resin and bonding strength of UMF-bonded plywood could be enhanced by using ammonium chloride and p-toluene sulfonic acid as a curing-agent together with wheat flour and corngluten powder as a extender.

  • PDF

A comparative analysis of volatile organic compound levels in field samples between different gas chromatographic approaches (분석기법의 차이에 따른 현장시료의 VOC 분석결과 비교연구: 분석오차의 발생 양상과 원인)

  • Ahn, Ji-Won;Pandey, Sudhir Kumar;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.465-476
    • /
    • 2010
  • In this study, a number of volatile organic compounds (VOCs) including benzene, toluene, p-xylene, styrene, and methyl ethyl ketone were analyzed from samples collected in ambient air and under the field conditions. These samples were analyzed independently by two different set-ups for VOC analyses, i.e., between [1] gas chromatography/flame ionization detector with tube sampling - (F-T system) and [2] gas chromatography/mass spectrometer with bag sampling (M-B system). The analytical results derived by both systems showed fairly similar patterns in relative sense but with moderately large differences in absolute sense. The results of M-B system were high relative to F-T system with the F-T/M-B ratio below 1. If the relative biases of the two measurement techniques are derived in terms of percent difference (PD) in concentration values, the results were generally above 35% on average. A student t-test was applied to investigate the statistical significance of those differences between the systems. The results of both analytical systems were different at 95% confidence level for toluene, p-xylene, styrene, and methyl ethyl ketone (P < 0.043). However, F-T and M-B systems showed strong correlations for toluene and p-xylene. The observed bias is explained in large part by such factors as the differences in standard phases used for each system and the chemical loss inside the bag sampler.

$^{99m}Tc-Labeling$ of Monoclonal Antibody to Carcinoembryonic Antigen and Biodistribution (항 암태아성항원에 대한 단세포군항체의 $^{99m}Tc$ 표지법개발 및 생체분포)

  • Moon, Dae-Hyuk;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chung, Hong-Keun;Park, Jae-Gahb
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.380-391
    • /
    • 1992
  • This study was designed to evaluate a direct method of $^{99m}Tc$ labeling using $\beta-mercaptoethanol$ as a reducing agent, and to investigate whether $^{99m}Tc$ labeled specific monoclonal antibody against carcinoembryonic antigen (CEA-92) can be used for the scintigraphic localization of human colon cancer xenograft. Purified CEA-92 IgG was fragmented into F $(ab')_2$ and then labeled with $^{99m}Tc$ by transchelation method using glucarate as a chelator. Labeling efficiency, immunological reactivity and in vitro stability of $^{99m}Tc$ CEA-92 F $(ab')_2$ were measured and then injected intravenously into nude mice bearing human colon cancer (SNU-C4). Scintigrams were obtained at 24 hour after injection. Then nude mice were sacrificed and the radioactivity was measured Labeling efficiency of injected $^{99m}Tc$ CEA-92 F $(ab')_2$, immunoreative fraction and in vitro stability at 24 hour of injected $^{99m}Tc$ CEA-92 F $(ab')_2$ was 45.2%, 32.8% and 57.4%, respectively. At 24 hour after injection, % ID/g in kidney (46.77) showed high uptake, but %ID/g in tumor (1.65) was significantly higher than spleen (0.69), muscle (0.16), intestine (0.45), stomach (0.75), heart (0.48) and blood (0.45). There was no significant difference between tumor and liver (1.81). Tumor contrast as quantitated by tumor to blood ratio of $^{99m}Tc$ CEA-92 F $(ab')_2$ was increased significantly (p<0.005) until 24 hours (3.70), and there was no statistical differece from tumor to blood ratio of I-131 CEA-92 F $(ab')_2$. The scintigram demonstrated localization of radioactivity over transplanted tumor, but significant background radioactivity was also noted over kidney and abdomen. It is concluded that CEA-92 F $(ab')_2$ can be labeled with $^{99m}Tc$ by a direct transchelation method using $\beta-mercaptoethanol$ as a reducing agent and $^{99m}Tc$ labeled CEA-92 F $(ab')_2$ can be used for the scintigraphic localization of human colon cancer xenograft in nude mice model.

  • PDF

Study of Design and Fabrication of GaAs Varactor diode (GaAs 버렉터 다이오드의 설계와 제작에 관한 연구)

  • Choi, Seok-Gyu;Baek, Young-Hyun;Beak, Tea-Jong;Kim, Mi-Ra;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.387-388
    • /
    • 2008
  • In this paper, we have designed and fabricated hyperabrupt varactor diodes. Capacitance variations of hyperabrupt-doped varactor diodes are larger than those of uniform-doped varactor diodes. The measured reverse breakdown voltage of the fabricated varactor diodes was about 20 V. For the anode contact diameter of $50\;{\mu}m$, the maximum capacitance of the fabricated varactor diode was 2.1 pF and the minimum capacitance 0.44 pF. Therefore, the $C_{max}/C_{min}$ ratio was 4.77. Also, for the anode contact diameter of $60\;{\mu}m$, the maximum and minimum capacitances were 2.9 and 0.62 pF, respectively. And, thus, the $C_{max}/C_{min}$ ratio was 4.64.

  • PDF

The Investigation of CF4 Decomposition in Methane Premixed Flames on Oxygen Enrichment (산소부화된 메탄 예혼합 화염에서 CF4 분해에 대한 연구)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.51-56
    • /
    • 2017
  • The decomposition of tetrafluoromethane has been investigated with the reaction mechanism proposed for freely propagating $CH_4/CF_4/O_2/N_2$ premixed flames on the oxygen enrichment. The factors affecting on the removal efficiency of tetrafluoromethane were analyzed. The increase in flame temperature due to oxygen enrichment has a great influence on the removal efficiency of tetrafluoromethane. At the same oxygen enrichment condition, the removal efficiency in the rich flame is higher than one in the lean flame. The increase of the F/H ratio leads to decrease the flame temperature and the removal efficiency of tetrafluoromethan is decreased at the flame temperature of 2600 K or lower, The elementary reactions that dominate the consumption of tetrafluoromethane are (R1) $CF_4+M=CF_3+F+M$ and (R2) $CF_4+H=CF_3+HF$. (R1) has the greatest effect on the consumption of tetrafluoromethane under the oxygen enhanced flames.

Characterization of Mullite Whiskers Synthesized with Compostion of Al(OH)3-SiO2-AlF3 (Al(OH)3-SiO2-AlF3 조성으로 합성된 뮬라이트 휘스커의 특성평가)

  • Lee, Hong-Lim;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.320-326
    • /
    • 2006
  • Mullite whiskers were synthesized by a vapor-solid reaction with $Al(OH)_3-SiO_2-AlF_3$. The heat treatment temperature did not affect the shape of mullite whisker but the composition change resulted in different sizes. The first one was $30-50{\mu}m$ in size with the aspect ratio of 60 and above, and the second one was $600{\mu}m$ and below in size with the aspect ratio of 15 and below. The $Al_2O_3$ content in formed mullite whisker was 73.57-80.29 wt%, which is high $Al_2O_3$ content composition. The Young's modulus and the hardness measured by nano-indentation method were 136.7 GPa and 19.81 GPa, respectively.

Elution Behavior of Protein and Pullulan in Asymmetrical Flow Field-flow Fractionation (AsFlFFF)

  • Ji, Eun-Sun;Choe, Seong-Ho;Yun, Guk-Ro;Chun, Jong-Han;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1433-1438
    • /
    • 2006
  • An AsFlFFF channel was designed and built, and then tested for analysis of pullulans and proteins. Pullulans and proteins having various nominal molecular weights were injected at various conditions of the cross-flow rate ($F_c$) and the channel-out flow rate ($F_{out}$). The retention (measured by the retention ratio R) and the zone broadening (measured by the plate height H) were measured, and then compared with theory. When the incoming flow rate, $f_{in}$ (and thus $F_{out}$) was varied with $F_c$ fixed at 2.5 mL/min, the plate height measured for the pullulan with nominal molecular weight (M) of about 100,000 showed the trend expected by the longitudinal diffusion theory (H decreases with increasing flow rate). In contrast, when $F_{out}$ was varied with the flow rate ratio, $F_c/F_{out}$, fixed constant at 5, the plate height measured for the same sample showed the trend expected from the non-equilibrium theory (H increases with increasing flow rate). Calibration plots (log D vs. log M) obtained with pullulans and proteins were not coincide, probably due to the difference in molecular conformation, suggesting the analysis of pullulans and proteins using AsFlFFF requires independent calibration. It was found that the linearity of the protein-calibration plot was improved by using a buffer solution as the carrier.