• Title/Summary/Keyword: Lysosomal storage disorder

Search Result 35, Processing Time 0.018 seconds

Lyso-globotriaosylsphingosine induces endothelial dysfunction via autophagy-dependent regulation of necroptosis

  • Ae-Rang Hwang;Seonghee Park;Chang-Hoon Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.231-240
    • /
    • 2023
  • Fabry disease is a lysosomal storage disorder characterized by the lysosomal accumulations of glycosphingolipids in a variety of cytotypes, which include endothelial cells. The disease is inherited and originates from an error in glycosphingolipid catabolism caused by insufficient α-galactosidase A activity, which causes uncontrolled progressive storage of intracellular globotriaosylceramide (Gb3) in the vasculature and extracellular accumulation of lyso-Gb3 (a deacetylated soluble form of Gb3). Necrosis can lead to inflammation, which exacerbates necrosis and creates a positive feedback loop that triggers necroinflammation. However, the role played by necroptosis, a form of programmed necrotic cell death, in the cell-to-cell inflammatory reaction between epithelial and endothelial cells is unclear. Thus, the present study was undertaken to determine whether lyso-Gb3 induces necroptosis and whether necroptosis inhibition protects endothelial dysfunction against lyso-Gb3 inflamed retinal pigment epithelial cells. We found lyso-Gb3 induced necroptosis of a retinal pigment epithelial cell line (ARPE-19) in an autophagy-dependent manner and that conditioned media (CM) from ARPE-19 cells treated with lyso-Gb3 induced the necroptosis, inflammation, and senescence of human umbilical vein endothelial cells. In addition, a pharmacological study showed CM from lyso-Gb3 treated ARPE-19 cells induced endothelial necroptosis, inflammation, and senescence were significantly inhibited by an autophagy inhibitor (3-MA) and by two necroptosis inhibitors (necrostatin and GSK-872), respectively. These results demonstrate lyso-Gb3 induces necroptosis via autophagy and suggest that lyso-Gb3 inflamed retinal pigment epithelial cells trigger endothelial dysfunction via the autophagy-dependent necroptosis pathway. This study suggests the involvement of a novel autophagy-dependent necroptosis pathway in the regulation of endothelial dysfunction in Fabry disease.

Mucopolysaccharidosis Type III: Overview and Future Therapeutic Approaches

  • Kwak, Min Jung
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Mucopolysaccharidosis (MPS) type III, or Sanfilippo syndrome is a rare autosomal recessive lysosomal storage disorder. It is caused by a deficiency of one of four enzymes involved in the degradation of the glycosaminoglycan (GAG) heparan sulfate. The resultant cellular accumulation of heparan sulfate causes various clinical manifestations. MPS III is divided into four subtypes depending on the deficient enzyme: MPS IIIA, MPS IIIB, MPS IIIC and MPS IIID. All the subtypes show similar clinical features and are characterized by progressive degeneration of the central nervous system (CNS). Main purpose of the treatment for MPS III is to prevent neurologic deterioration. However, conventional enzyme replacement therapy has a limitation due to inability to cross the blood-brain barrier. Several experimental treatment options for MPS III are being developed.

Overview of Mucolipidosis Type II and Mucolipidosis Type III α/β

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Mucolipidosis type II (MLII; MIM#252500) and type III alpha/beta (MLIIIA; MIM#252600) very rare lysosomal storage disease cause by reduced enzyme activity of GlcNAc-1-phosphotransferase. ML II is caused by a total or near total loss of GlcNAc-1-phosphotransferase activity whether enzymatic activity in patient with ML IIIA is reduced. While ML II and ML III share similar clinical features, including skeletal abnormalities, ML II is the more severe in terms of phenotype. ML III is a much milder disorder, being characterized by latter onset of clinical symptoms and slower progressive course. GlcNAc-1-phosphotransferase is encoded by two genes, GNPTAB and GNPTG, mutations in GNPTAB give rise to ML II or ML IIIA. To date, more than 100 different GNPTAB mutations have been reported, causing either ML II or ML IIIA. Despite development of new diagnostic approach and understanding of disease mechanism, there is no specific treatment available for patients with ML II and ML IIIA yet, only supportive and symptomatic treatment is indicated.

Hematopoietic Cell Transplantation in Patients with Mucopolysaccharidosis Type II

  • Song, Ari
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked lysosomal storage disorder caused by deficiency of the enzyme iduronate-2-sulfatase, leading to the accumulation of glycosaminoglycans (GAGs), which affects multiple organs and systems. Current treatments for MPS II include enzyme replacement therapy (ERT) and hematopoietic cell transplantation (HCT) to reduce the accumulation of GAGs. HCT has the potential advantage that donor-derived enzyme-competent cells can provide a continuous secreting source of the enzyme. However, HCT as a treatment for MPS II remains controversial because its effectiveness is unclear, particularly in terms of neurological symptoms. To date, several clinical experiences with HCT in MPS II have been reported. In this paper, we review post-HCT outcomes in the previously published literature and discuss the effects of HCT on each of the clinical signs and symptoms of MPS II.

From diagnosis to treatment of mucopolysaccharidosis type VI: A case report with a novel variant, c.1157C>T (p.Ser386Phe), in ARSB gene

  • Yoo, Sukdong;Lee, Jun;Kim, Minji;Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase B due to mutations in the ARSB gene. Here, we report the case of a Korean female with a novel variant of MPS VI. A Korean female aged 5 years and 8 months, who is the only child of a healthy non-consanguineous Korean couple, presented at our hospital for severe short stature. She had a medical history of umbilical hernia and recurrent otitis media. Her symptoms included snoring and mouth breathing. Subtle dysmorphic features, including mild coarse face, joint contracture, hepatomegaly, and limited range of joint motion, were identified. Radiography revealed deformities, suggesting skeletal dysplasia. Growth hormone (GH) provocation tests revealed complete GH deficiency. Targeted exome sequencing revealed compound heterozygous mutations in the ARSB genes c.512G>A (p.Gly171Asp; a pathogenic variant inherited from her father) and c.1157C>T (p.Ser386Phe; a novel variant inherited from her mother in familial genetic testing). Quantitative tests revealed increased urine glycosaminoglycan (GAG) levels and decreased enzyme activity of arylsulfatase B. While on enzyme replacement therapy and GH therapy, her height increased drastically; her coarse face, joint contracture, snoring, and obstructive sleep apnea improved; urine GAG decreased; and left ventricular mass index was remarkably decreased. We report a novel variant-c.1157C>T (p.Ser386Phe)-of the ARSB gene in a patient with MPS VI; these findings will expand our knowledge of its clinical spectrum and molecular mechanisms.

A 10-year-old Boy with Microscopic Hematuria and Renal Biopsy Findings Mimicking Fabry Disease

  • Chung, Woo Yeong;Kang, Mi Seon
    • Childhood Kidney Diseases
    • /
    • v.20 no.2
    • /
    • pp.79-82
    • /
    • 2016
  • Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the enzyme ${\alpha}-galactosidase$ A, resulting in the accumulation of glycosphingolipids within the lysosomes of various cell types. It has a wide spectrum of clinical phenotypes, and renal failure is a serious complication. Fabry disease is confirmed either by measurement of ${\alpha}-galactosidase$ A activity or by genetic testing for GLA mutations. Renal biopsy findings on light microscopy, specifically enlarged podocytes with foamy cytoplasm, and osmiophilic inclusion bodies in the cytoplasm in all types of renal cells on electron microscopy, are characteristic of this disease. The predominant differential diagnosis is iatrogenic phospholipidosis in association with certain drugs that can cause cellular injuries indistinguishable from Fabry disease. Here, we report the case of a 10-year-old boy with microscopic hematuria who underwent a renal biopsy that showed morphological findings consistent with Fabry disease, although the patient had neither a GLA mutation nor a history of drug consumption. Six years later, spontaneous regression of this renal pathology was observed in a second renal biopsy examination.

Cochlear Implantation via the Transmeatal Approach in an Adolescent with Hunter Syndrome-Type II Mucopolysaccharidosis

  • Kim, Hantai;An, Jun Young;Choo, Oak-Sung;Jang, Jeong Hun;Park, Hun Yi;Choung, Yun-Hoon
    • Korean Journal of Audiology
    • /
    • v.25 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Type II mucopolysaccharidosis (MPS II) commonly known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by iduronate-2-sulfatase deficiency, which in turn causes otorhinolaryngological manifestations, including sensorineural hearing loss (SNHL). Previously, the median survival age of patients with MPS was approximately 13.4 years. However, in the era of enzyme replacement therapy and other multidisciplinary care modalities, the life expectancy has increased. Herein, we report a rare case of an adolescent with MPS II who underwent SNHL treatment with cochlear implantation (CI). Based on unexpected findings of mastoid emissary veins and overgrowth of the vessels around the temporal bone, CI was performed using the transmeatal approach instead of the conventional transmastoid method, to avoid damage to the vessels. The average hearing threshold after CI was 35 dB and no surgical complications were encountered. Adolescent MPS II may present vessel abnormalities, which can reduce the success rate of surgery. In patients with MPS II with SNHL, CI should be performed under careful monitoring of vessel overgrowth. Moreover, with regard to feasibility of CI in adolescent patients with MPS II with SNHL, surgical techniques such as the transmeatal approach should be selected based on adequate assessment of the case.

Cochlear Implantation via the Transmeatal Approach in an Adolescent with Hunter Syndrome-Type II Mucopolysaccharidosis

  • Kim, Hantai;An, Jun Young;Choo, Oak-Sung;Jang, Jeong Hun;Park, Hun Yi;Choung, Yun-Hoon
    • Journal of Audiology & Otology
    • /
    • v.25 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Type II mucopolysaccharidosis (MPS II) commonly known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by iduronate-2-sulfatase deficiency, which in turn causes otorhinolaryngological manifestations, including sensorineural hearing loss (SNHL). Previously, the median survival age of patients with MPS was approximately 13.4 years. However, in the era of enzyme replacement therapy and other multidisciplinary care modalities, the life expectancy has increased. Herein, we report a rare case of an adolescent with MPS II who underwent SNHL treatment with cochlear implantation (CI). Based on unexpected findings of mastoid emissary veins and overgrowth of the vessels around the temporal bone, CI was performed using the transmeatal approach instead of the conventional transmastoid method, to avoid damage to the vessels. The average hearing threshold after CI was 35 dB and no surgical complications were encountered. Adolescent MPS II may present vessel abnormalities, which can reduce the success rate of surgery. In patients with MPS II with SNHL, CI should be performed under careful monitoring of vessel overgrowth. Moreover, with regard to feasibility of CI in adolescent patients with MPS II with SNHL, surgical techniques such as the transmeatal approach should be selected based on adequate assessment of the case.

Clinical, radiologic, and genetic features of Korean patients with Mucopolysaccharidosis IVA

  • Lee, Na Hee;Cho, Sung Yoon;Maeng, Se Hyun;Jeon, Tae Yeon;Sohn, Young Bae;Kim, Su Jin;Park, Hyung-Doo;Jin, Dong Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.11
    • /
    • pp.430-437
    • /
    • 2012
  • Purpose: Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is rare lysosomal storage disorder caused by N-acetylgalactosamine-6-sulfatase (GALNS) deficiency. Only a few MPS IVA cases have been reported in the Korean literature; there is a paucity of research about clinical or radiologic findings for this disorder. Therefore, we studied clinical findings, radiological features, and genetic data of Korean MPS IVA patients for determining factors that may allow early diagnosis and that may thus improve the patients' quality of life. Method: MPS IVA was confirmed via assay for enzymatic activity of leukocytes in 10 patients. The GALNS gene was analyzed. Patients' charts were retrospectively reviewed for obtaining clinical features and evaluated for radiological skeletal surveys, echocardiography, pulmonary function test, and ophthalmologic test results. Result: Nine patients had severe clinical phenotype, and 1 had an intermediate phenotype, on the basis of clinical phenotype criteria. Radiologic findings indicated skeletal abnormalities in all patients, especially in the hips and extremities. Eight patients had an odontoid hypoplasia, and 1 showed mild atlantoaxial subluxation and cord myelopathy. Genetic analysis indicated 10 different GALNS mutations. Two mutations, c.451C>A and c.1000C>T, account for 37.5% (6/16) and 25% (4/16) of all mutations in this samples, respectively. Conclusion: An understanding of the clinical and radiological features involved in MPS IVA may allow early diagnosis of MPS IVA. Adequate evaluations and therapy in the early stages may improve the quality of life of patients suffering from skeletal abnormalities and may reduce life-threatening effects of atlantoaxial subluxation.

A Case of an 18-month-old Boy with Type 3 Gaucher Disease Presenting with Hepatosplenomegaly and Growth Retardation: The Clinical Course after Enzyme Replacement Therapy (18개월 남아에서 간비장비대, 성장 부진을 동반한 3형 고셔병 증례: 효소 대체 요법 후 임상 경과)

  • Lim, Young Shin;Hwang, Jeongyun;Kim, Jinsup;Yang, Aram;Park, Hyung Doo;Jeon, Tae Yeon;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2017
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by beta-glucosidase deficiency. An 18 month-old male with hepatosplenomegaly, anemia, thrombocytopenia, and growth retardation referred to our hospital. The patient showed neurological symptoms, such as supranuclear gaze palsy and developmental delay. Bone marrow biopsy performed to rule out malignancy and the results revealed no malignant cell; however, abnormal histiocytes suggesting storage disease was noted. Based on hepatosplenomegaly, bicytopenia and unexplained neurologic manifestations, enzyme activity and genetic analysis were conducted emergently with a strong suspicion of GD. Beta-glucosidase activity in leukocyte was decreased. GBA sequencing to confirm the diagnosis revealed compound heterozygous pathogenic variants (i.e., c.754T>A, c.887G>A), both previously reported as the cause of neuronopathic GD. Under the diagnosis of type 3 GD, the patient immediately received enzyme replacement therapy (ERT). After 17 months of ERT, the size of spleen decreased, and hemoglobin and platelet count returned to normal. In addition, the activity of chitotriosidase and angiotensin converting enzyme decreased. However, myoclonic movement and generalized seizure occurred at the age of 19 months and antiepileptic drug was started. Other neurological deterioration including supranuclear gaze palsy and developmental delay also persisted. A new therapy to overcome neurologic problems should be developed for patients with type 3 GD.

  • PDF