
Introduction

Mucopolysaccharidosis (MPS) type III, or Sanfilippo syndrome 
is a rare autosomal recessive lysosomal storage disorder1,2). It is 
caused by a deficiency of one of four enzymes involved in the 
degradation of the glycosaminoglycan (GAG) heparan sulfate3-6). 
The resultant cellular accumulation of heparan sulfate causes var-
ious clinical manifestations. MPS III is divided into four subtypes 
depending on the deficient enzyme: MPS IIIA (N-sulfoglucos-
amine sulfohydrolase, also known as sulfamidase or heparan sul-
fate sulfatase); MPS IIIB (N-alpha-acetylglucosaminidase); MPS 
IIIC (heparan acetyl-CoA:alpha-glucosaminide N-acetyltrans-
ferase); MPS IIID (N-acetylglucosamine-6-sulfatase)3-6). All the 
subtypes show similar clinical features and are characterized by 
progressive degeneration of the central nervous system (CNS)7). 
Typical features of MPS may be present, although milder than 
in other types of MPS8). This leads delayed diagnosis of MPS III. 
Patients with MPS III usually present between the age of 1 and 
6 years with developmental delay and/or behavioral problems 

such as hyperactivity and aggression9,10). Neurologic deterioration 
progresses to a vegetative state and death can occur anywhere be-
tween the early teens and the sixth decade10-15). Incidences of MPS 
III range from 0.39 per 100,000 live births in Taiwan to 1.89 per 
100,000 live births in The Netherlands9,16-19). MPS III is the most 
common type of MPS around the world20). By contrast, MPS III 
accounts for 18% of Korean patients with MPS that is the second 
most common after MPS II (64%)21). Currently, there is no avail-
able therapy for MPS III. Experimental trials with animal models 
for MPS III are in progress22-27). In this review causes, clinical fea-
tures, diagnosis and current therapeutic approaches to MPS III 
will be presented.

Classification

MPS III is characterized by the accumulation of heparan sul-
fate in lysosomes and increased excretion of it in urine. MPS III 
occurs in 4 forms depending on the deficient enzyme. Heparan 
sulfate is a negatively charged polysaccharide covalently bound 
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to various proteins at the cell surface and in the extracellular ma-
trix28). Degradation of heparan sulfate commences with endolytic 
cleavage by heparanase, resulting in heparan oligosaccharide 
fragments. Subsequent degradation occurs by sequential exolytic 
processes in the lysosomes which involve three exoglycosidases, 
at least three sulfatases and an acetyltransferase. Four of these 
enzymes are specific for heparan sulfate and a deficiency of each 
leads to MPS IIIA, MPS IIIB, MPS IIIC and MPS IIID. MPS IIIA 
(MIM #252900) results from mutations in the gene encoding 
N-sulfoglucosamine sulfohydrolase (SGSH; EC 3.10.1.1), also 
known as sulfamidase or heparan sulfate sulfatase3). MPS IIIB 
(MIM #252920) results from mutations in the gene encoding N-
alpha-acetylglucosaminidase (NAGLU; EC 3.2.1.50)4). MPS IIIC 
(MIM #252930) results from mutations in the gene encoding 
heparan acetyl-CoA:alpha-glucosaminide N-acetyltransferase 
(HGSNAT; EC 2.3.1.78)5). MPS IIID (MIM #252940) results from 
mutations in the gene encoding N-acetylglucosamine-6-sulfatase 
(GNS; EC 3.1.6.14)6). Classification of MPS III subtypes are sum-
marized in Table 1.

Genetic Aspects

Homozygous or compound heterozygous mutation in the caus-
ative gene causes one of the subtypes of MPS III. Most mutations 
are private but some of them are frequently found in distinct 

geographical regions. The kind of mutation affects the residual 
enzyme activity consequently clinical severity. The correlation 
between genotype and phenotype is uncertain.

1. MPS IIIA

The gene encoding SGSH is localized to chromosome 17q25.3 
and contains 8 exons3,29). The SGSH cDNA encodes a protein of 
502 amino acids with five potential N-glycosylation sites3). So 
far, 143 different mutations have been reported. These include 
98 misssense mutations, 11 nonsense mutations, 3 splice site 
mutations, 17 small deletions and 9 small insertions (Table 2)30). 
R245H mutation was common in Germany (35% of the mutant 
alleles)31) and The Netherlands (57% of the mutant alleles)32). 
S66W mutation is frequent in Italy (29% of the mutant alleles)33). 
R74C and 1079delC mutations were frequent in Poland (56% 
of the mutant alleles) and Spain (45% of the mutant alleles) re-
spectively31,34). R245H, S66W, Q380R and 1080delC mutations 
are known to be associated with the severe phenotype11). S298P, 
T421R, P180L, L12Q and R206P mutations are considered to 
show an attenuated phenotype with a longer preservation of psy-
chomotor functions and a longer survival11,35). 

Table 1. Classification of the subtypes of MPS III

Subtype Deficient enzyme Phenotype MIM number Gene/Locus Cytogenetic location

MPS IIIA N-sulfoglucosamine sulfohydrolase 252,900 SGSH 17q25.3

MPS IIIB N-alpha-acetylglucosaminidase 252,920 NAGLU 17q21.1

MPS IIIC Heparan acetyl-CoA:
   alpha-glucosaminide N-acetyltrasnferase

252,930 HGSNAT 8p11.1

MPS IIID N-acetylglucosamine-6-sulfatase 252,940 GNS 12q14.3

MPS, Mupopolysaccharidosis; SGSH, N-sulfoglucosamine sulfohydrolase, also known as sulfamidase or heparan sulfate sulfatase; NAGLU, N-alpha-
acetylglucosaminidase; HGSNAT, Heparan acetyl-CoA:alpha-glucosaminide N-acetyltrasnferase; GNS, N-acetylglucosamine-6-sulfatase.

Table 2. Mutation types and numbers found in the alleles of four genes for MPS III

Subtype Gens Total Missense Nonsense Splicing
Small 

deletion
Small 

insertion
Small 
indels

Gross 
deletions

Gross 
insertions

Complex 
rearrangement

MPS IIIA SGSH 143 98 11 3 17 9 1 3 1 0

MPS IIIB NAGLU 163 97 14 6 25 13 1 4 3 0

MPS IIIC HGSNAT 65 27 9 14 5 5 1 2 1 1

MPS IIID GNS 25 3 4 4 5 4 1 2 0 2

Data from The Human Gene Mutation Database (http://www.hgmd.org). Cardiff University, 2017. Accessed May 13th, 2017.
MPS, mucopolysaccharidosis.
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2. MPS IIIB

The gene encoding NAGLU is localized to chromosome 
17q21.14). The cDNA encodes a protein of 743 amino acids with 
six potential N-glycosylation sites36). Currently 163 different mu-
tations have been reported. These include 97 missense mutations, 
14 nonsense mutations, 6 splice site mutations, 25 small deletions 
and 13 small insertions (Table 2)30). Recurrent mutations are very 
rare. F48L, G69S, S612G and R643C mutations are associated 
with mild phenotype37). In Korea, R482W mutation has been re-
ported in two patients with MPS IIIB38,39).

3. MPS IIIC

The gene encoding HGSNAT is localized to chromosome 
8p11.1 and contains 18 exons5). HGSNAT cDNA encodes a 
protein of 635 amino acids, which contains 11 transmembrane 
domains and 5 potential N-glycosylation sites40,41). To date, 65 dif-
ferent mutations have been reported. These include 27 missense 
mutations, 9 nonsense mutations, 14 splice site mutations, 5 small 
deletions and 5 small insertions (Table 2)30). R344C and S518F 
mutations (22% and 29% of the mutant alleles respectively) were 
common in The Netherlands10). G262R and S539C mutations 
are considered to show an attenuated phenotype10). 372-2A>G 
and 234+1G>A mutations were common in a study including 
7 Spanish patients, 1 Argentinean and 3 Moroccan patients42). 
Compound heterozygous mutation for previously reported 
234+1G>A and R384X was found in a Korean patients with MPS 
IIIC43).

4. MPS IIID

The gene encoding GNS is localized to chromosome 12q14 and 
contains 14 exons6). The cDNA encodes a protein of 552 amino 
acids with 13 potential N-glycosylation sites6). So far, 25 different 
mutations have been reported. These include 3 missense muta-
tions, 4 nonsense mutations, 5 small deletions, 4 small insertions 
and 2 rearrangements30). There are fewer missense and nonsense 
mutations compared with the other MPS III subtypes. Also there 
are no common mutations in MPS IIID patients.

Clinical Features

Clinical features of MPS III include severe neurological defect 
with relatively mild somatic manifestations compared with other 
forms of MPS7,8). Somatic symptoms are coarse facial appearance 

with broad eyebrows, dark eyelashes, dry and rough hair, hepa-
tosplenogemaly, enlarged tongue, hearing loss and dysostosis 
multiplex8,10,15,44). Subtypes of MPS III are clinically similar and 
indistinguishable. However, there are reports that the clinical 
course in MPS IIIA is more severe with earlier onset, more rapid 
progression of symptoms and earlier death10,15,45). 

Patients with MPS III usually present between the age of 1 and 6 
years9,10). Prenatal and early development is typically normal. The 
most common initial symptom is speech/language delay (48%), 
followed by dysmorphology (22%), and hearing loss (20%)44). 
Early behavioral problems include perseverative chewing and 
difficulty with toilet training44). Other behavioral problems are 
hyperactivity, anxiety and aggression which are frequently very 
hard to manage10,46,47). Most patients also develop sleep disor-
ders47-49). Sleep problems include settling difficulties, early waking 
and frequent nocturnal waking. Behavioral problems regress with 
age and finally disappear due to the progressive mental retarda-
tion and loss of motor function including swallowing and walk-
ing11-13). Patients with MPS III eventually become a vegetative 
state and die anywhere between the second and the sixth decade 
of life10).

Diagnosis

1. Urinary GAG analysis

The detection of heparan sulfate in the urine is the first step in 
the diagnosis for suspected MPS III patients. Both a quantitative 
test of total GAG and a fractionation method such as electro-
phoresis should be used. When urinary excretion of total GAG 
is elevated, electrophoretic separation of GAGs can establish the 
different types of GAGs50). Increased excretion of only heparan 
sulfate indicates MPS III. Urine testing may be falsely negative in 
MPS III due to lower urinary GAG levels and smaller heparan 
sulfate fragments than in the other types of MPS50). Therefore, 
enzyme assay should be performed in suspected MPS III patients 
with normal urinary GAG excretion. A liquid chromatography/
tandem mass spectrometry method (LC-MS/MS) is recently de-
veloped. LC-MS/MS can quantify the types of GAGs and is more 
sensitive, specific and less time-consuming than electrophore-
sis51,52). The quantification of urinary GAGs has a limitation that 
it cannot distinguish the MPS III subtypes. Although, that is a 
useful initial screening test.
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2. Enzyme assay

Enzyme assay in peripheral blood leukocytes or cultured fibro-
blasts provides definitive diagnosis of MPS III and classification 
of the subtype53-56). Patients with MPS III show markedly de-
creased enzyme activity. Enzyme assay has limited use for carrier 
detection because there is considerable overlap of the levels of 
enzyme activity between carriers and unaffected controls.

3. DNA sequencing

Direct DNA sequencing of the causative gene can confirm the 
subtypes of MPS III. Also, it is useful to detect carriers among 
siblings or other relatives when the mutation is known. However, 
it cannot detect large deletions which frequently occur in MPS 
IIID.

4. Other studies

Additional studies including neurologic examination, hearing 
test, and radiographic examination etc. are needed to evaluate the 
affected organs.

5. Prenatal diagnosis

Prenatal diagnosis can be performed using material obtained by 
chorionic villous sampling and amniocenteces57). GAGs analysis, 
enzyme assay and DNA sequencing can be used for this purpose.

Management

Currently, there is no effective therapy for the CNS involvement 
of MPS III. Therefore, primary efforts are focused to manage be-
havior and sleep problems. Treatment of the CNS deterioration 
in MPS III is challenging and several potential therapies are being 
developed.

1. Management of behavior and sleep problems

The behavior problems respond poorly to a behavioral ap-
proach to treatment. The response to drug treatment is very 
unpredictable. Antipsychotic drugs such as thioridazine hydro-
chloride and haloperidol can be useful20). 

Management of sleep problems is also very difficult. Many 
parents use physical restraint at night to prevent children from 
getting out of bed20). Among the medications, melatonin is effec-

tive in approximately 75% of patients. Benzodiazepines, chloral 
hydrate, antihistamines and antipsychotic agents are reported as 
less effective49). 

2. Enzyme replacement therapy (ERT)

ERT is currently available for patients with MPS I, MPS II, MPS 
IVA, and MPS VI58). The limitation of ERT for MPS III is that 
peripherally administered enzyme cannot cross the blood-brain 
barrier. High dose, chemically modified sulfamidase without 
mannose-6-phosphate glycans was administered intravenously 
in a murine model of MPS IIIA. Chemical modification made 
lower doses of recombinant human SGSH (rhSGSH) to increase 
systemic delivery. However, it was not effective in the brain59). 
Injection of rhSGSH directly into the brain or into cerebrospinal 
fluid (CSF) of MPS IIIA mice has been effective in reducing brain 
pathology60,61). A clinical trial of CSF infusion of rhSGSH is being 
undertaken. Recently low dose, continuous delivery of rhSGSH 
using subcutaneously placed osmotic pumps connected to a uni-
lateral intraventricular cannula in the mouse model of MPS III 
is reported that heparan sulfate in both hemispheres of the MPS 
IIIA brain and cervical spinal cord is nearly normalized23). 

3. Hematopoietic cell transplantation (HCT)

HCT by bone marrow transplantation was not successful in 
MPS III patients, in contrast to some other neuropathic MPS62). 
Umbilical cord blood-derived stem cell transplantation did not 
prevent neurologic deterioration of MPS III patients, even when 
performed before clinical onset of CNS disease63).

4. Gene therapy

Gene therapy introduce the coding sequence of the enzyme 
into cells of the patients using a viral vector. The altered cells will 
have enzymatic activity and secrete it into circulation to be taken 
up by other cells. Administration of serotype 9 adeno-associated 
viral vectors (AAV9s) encoding SGSH into CSF of MPS IIIA 
mice resulted in increased enzymatic activity throughout the 
brain and in serum, decreased CNS pathology, normalization of 
behavioral deficits and prolonged survival64). Sulfatase-modifying 
factor (SUMF1) activates the catalytic site of SGSH. Co-delivery 
of SGSH and SUMF1 via intracerebral administration in children 
with MPS IIIA is being undertaken65).
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5. Substrate reduction therapy

Substrate reduction therapy aimes at inhibiting the synthesis of 
GAGs to a point where residual enzymatic activity is sufficient to 
prevent accumulation of GAGs. Substrate reduction therapy uses 
small molecules with the ability to across the blood-brain barrier. 
Therefore they are expected to have potential for the treatment of 
MPS III. Several molecules have been suggested.

Rhodamine B is a non-specific inhibitor of GAG synthesis. 
Rhodamine B reduced GAG contents in brain and urine, de-
creased liver size, improved CNS functions in a mouse model of 
MPS IIIA66,67). There were no significant adverse effects in MPS 
IIIA mice with low dose treatment of rhodamine B68).

Genistein is an isoflavone that inhibits kinase activity of epider-
mal growth factor receptor, which is required for full expression 
of genes coding for enzymes involved in GAG production. Ge-
nistein inhibited synthesis of GAGs considerably in cultured skin 
fibroblasts from patients with MPS IIIA and IIIB69). In a mouse 
model of MPS IIIB, genistein reduced heparan sulfate in liver 
and brain, improved neuropathology and corrected behavior de-
fects70). Recently, a genistein-rich soy isoflavone extract in patients 
with MPS IIIA and IIIB, resulted in a decrease in the urinary 
GAG levels, normalization of hair morphology and improvement 
of neurologic symptoms including inhibition of developmental 
regression, improved sleep and decreased hyperactivity71).

Oral treatment with N-butyldeoxynojirimycin (OGT 918, 
miglustat) has been developed for type I Gaucher disease (non-
neuropathic), resulting in decreased substrate formation and 
improvement of clinical features72). Miglustat reversibly inhibits 
glucosylceramide synthase, an essential enzyme for the synthesis 
of most glycosphingolipids. Miglustat is able to cross the blood-
brain barrier, and is thus a potential therapy for neurological 
diseases. A recent clinical study in patients with Niemann-Pick 
disease type C was reported that miglustat had improved or 
stabilized several neurologic manifestations of Neimann-Pick 
disease type C73). However, one year of miglustat treatment was 
not associated with any improvement or stabilization of behavior 
problems in patients with MPS III74).

6. Molecular chaperone therapy

Most of missense mutations result in midfolding of enzyme and 
ultimately rapid degradation of enzyme in lysosomes. Molecular 
chaperones are small molecules that can correct the misfolding 
of enzyme. They are typically reversible competitive inhibitors 
which can bind active-site of enzyme, induce normal folding of 

enzyme, resulting in restoration of enzyme activity75). Glucos-
amine is a competitive inhibitor of the HGSNAT. It was reported 
that glucosamine increased HGSNAT activity in cultured fibro-
blasts from MPS IIIC patient carrying with several missense 
mutations76). Modified U1 spliceosomal small nuclear RNAs im-
proved recognition of the donor splice sites of selected splice site 
mutations and enhanced the correct splicing process in cultured 
fibroblasts from patients with MPS IIIC27). Clinical trials on this 
approach have not yet been published.

Conclusion

MPS III is characterized by progressive degeneration of the 
CNS. Early death in teens occurs in severe phenotype. New treat-
ment modalities are needed due to a limitation of a conventional 
enzyme replacement therapy in patients with MPS III. Study 
results of substrate reduction therapy and molecular chaperone 
therapy in MPS III animal models are promising. It suggests that 
they might be potential future therapies. Clinical trials with them 
in MPS III patients are necessary.
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