• Title/Summary/Keyword: Lysosomal enzymes

Search Result 49, Processing Time 0.021 seconds

Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO2 for Melanin Treatment

  • Bang, Seung Hyuck;Kim, Pil;Oh, Suk-Jung;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.718-722
    • /
    • 2015
  • Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca2+, and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca2+ was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.

Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

  • Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.438-444
    • /
    • 2015
  • Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

Effects of Ginseng Saponin on the Lysosomal Enzyme Activities in Streptozotocin-induced Diabetic Mice (인삼 Saponin이 Lysosome 효소 활성에 미치는 영향)

  • 문창규;김희수;김강석
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.3
    • /
    • pp.105-109
    • /
    • 1994
  • Lysosomal enzymes might play a most important role in the pathogenesis od diabetic microangiopathy. Some glycosidases, which participate in the catabolism of glycoprotein, are significantly decreased in diabetic mice. In search of new potential lysosomal enzyme inducers, we examined the effects of crude red-ginseng saponin fraction on N-acetyl-$\beta$-D-glucosaminidase, $\beta$-D-galactosidase and $\alpha$-D-mannosidase activities in the liver and kidney of normal and streptozotocin induced diabetic mice. It was found that i.p. administration of ginseng saponin produced the induction of lysosomal enzymes in the kidney more intensively than in the liver. The obtained results suggest the possibility that ginseng saponin might prevent the diabetic microangiopathy.

  • PDF

Molecular Genetics and Diagnostic Approach of Mucolipidosis II/III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Mucolipidosis (ML) II/III are autosomal recessive diseases caused by deficiency of post-translational modification of lysosomal enzymes. The mannose-6-phosphate (M6P) residue in lysosomal enzymes synthesized by N-acetylglucosamine 1-phosphotransferase (GlcNAc-phosphotransferase) serves as recognition marker for trafficking in lysosomes. GlcNAc-phosphotransferase is encoded by GNPTAB and GNPTG. Mutations in GNPTAB cause severe ML II alpha/beta and the attenuated ML III alpha/beta. Whereas mutations in GNPTG cause the ML III gamma, the attenuated type of ML III variant. For the diagnostic approaches, increased urinary oligosaccharides excretion could be a screening test in clinically suspicious patients. To confirm the diagnosis, instead of measuring the activity of GlcNAc phosphotransferase, measuring the enzymatic activities of different lysosomal hydrolases are useful for diagnosis. The activities of several lysosomal hydrolases are decreased in fibroblasts but increased in serum of the patients. In addition, the sequence analysis of causative gene is warranted. Therefore, the confirmatory diagnosis requires a combination of clinical evaluation, biochemical and molecular genetic testing. ML II/III show complex disease manifestations with lysosomal storage as the prime cellular defect that initiates consequential organic dysfunctions. As there are no specific therapy for ML to date, understanding the molecular pathogenesis can contribute to develop new therapeutic approaches ultimately.

Lysosomal Enzyme Inhibiting Activity of Alkaloidal Fraction from Tylophora indica Leaves in Arthritic rats

  • Arora, Sandeep;Singh, Hemant Kumar
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.289-294
    • /
    • 2007
  • Ethanolic extract (50% v/v) and alkaloid fraction of Tylophora indica leaves were examined for lysosomal enzyme inhibitory activity in adjuvant-induced arthritic rats. The alkaloid fraction showed statistically significant inhibition of arthritic lesions (p < 0.05) from day 18, (p < 0.025) from day 20 and (p < 0.001) from day 21 onwards in the adjuvant-induced arthritis, which was comparable to the response of standard drug Indomethacin. The ethanolic extract was less significant than the alkaloidal fraction in inhibition of arthritis. Alkaloid fraction showed significant (p < 0.001) inhibitory effect on the lysosomal enzyme activities in adjuvantinduced arthritic rats. It also significantly prevented decrease in collagen levels and synovial damage observed during arthritis and also inhibited increase in urinary excretion levels of collagen degradation products like hydroxyproline, hexosamine, hexuronic acid, etc. Both ethanolic extract as well as the alkaloid fraction, however, did not show any significant activity in normal nonarthritic rats. The ethanolic extract and the alkaloid fraction may thus be able to inhibit the progress of inflammation and inhibit the destructive activity of lysosomal enzymes on structural macromolecules like collagen etc. in the synovial capsule in joints during arthritic states. They may thus prevent synovial damage observed during arthritis.

Muscle Ultrastructural Changes by Lysosomal Enzymes -1. Transmission Electron Microscopic Studies- (Lysosomal Enzyme에 의(依)한 근육조직(筋肉組織)의 변화(變化) -제(第) 1 보(報) Transmission Electron Microscopy에 의한 고찰(考察)-)

  • Cho, Moo-Je;Yoon, Tae-Gyu;Bailey, Milton E.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 1978
  • Ultrastructural changes in Z-line, M-line and myofilaments of bovine psoas muscle produced by leukocyte lysosomal enzymes in vitro at different pH values (pH 7.0 and 4.0), temperatures (37 and $4^{\circ}C$) and time intervals (12, 24 hours at $37^{\circ}C$ and 36, 168 hours at $4^{\circ}C$) were studied by transmission electron microscope. Muscle incubated with leukocyte lysosomal enzymes at pH 7.0 produced distinguishable degradation of Z-line, M-Line and H-zone at both temperatures but at acidic pH (pH 4.0), Z-line were very stable and myofilaments were severely disintegrated.

  • PDF

Muscle Ultrastructural Changes by Lysosomal Enzymes -2. Scanning Electron Microscopic Studies- (Lysosomal Enzyme에 의(依)한 근육조직(筋肉組織)의 변화(變化) -제(第)2보(報) Scanning Electron Microscopy에 의(依)한 고찰(考察)-)

  • Cho, Moo-Je;Yoon, Tae-Gyu;Bailey, Milton E.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.36-45
    • /
    • 1978
  • Surface ultrastructural changes in endomysial connective tissue, sarcolemma and transverse ridges of bovine psoas muscle produced by leukocyte lysosomal enzymes in vitro at different pH (pH 7.0 and 4.0), temperature (37 and $4^{\circ}C$) and time interval (12, 24 hours at $37^{\circ}C$ and 36, 168 hours at $4^{\circ}C$ were studied by scanning electron microscope. Muscle incubated with leukocyte lysosomal enzymes at pH 7.0 produced severe degradation of endomysial and sarcolemmal connective tissue and transverse ridges but at pH 4.0 endomysial and sarcolemmal structures remain moderately stable and tranverse ridges are very stable even after 24 hours incubation at $37^{\circ}C$ and 7 days incubation at $4^{\circ}C$.

  • PDF

Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions

  • Kang, Sun Moon;Kang, Geunho;Seong, Pil-Nam;Park, Beomyoung;Kim, Donghun;Cho, Soohyun
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.742-748
    • /
    • 2014
  • This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and $-196^{\circ}C$ (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycle), and 3) refrigeration ($4^{\circ}C$) for 7 d after 7 d of freezing. The control was the fresh (non-frozen) LD. Freezing treatment at all temperatures significantly (p<0.05) increased the activities of GSH-Px, AGP, and BNAG. The $-196^{\circ}C$ freezing had similar effects to the $-20^{\circ}C$ and $-60^{\circ}C$ freezing. Higher (p<0.05) enzymes activities were sustained in frozen LD even after 4 freeze-thaw cycles and even for 7 d of refrigeration after freezing. These findings suggest that freezing has remarkable effects on the activities of antioxidant enzyme and lysosomal enzymes of Hanwoo beef in any condition.

Chemical Properties of Porcine Leukocyte Lysosomal Hydrolases (Porcine Leukocyte Lysosomal Hydrolases의 화학적성질(化學的性質)에 관(關)한 연구(硏究))

  • Cho, Moo-Je
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.175-181
    • /
    • 1977
  • Lysosomal enzyme latency was demonstrated for hydrolases from porcine leukocyte by suspending sediment sfrom differential centrifugation in 0.125 to 0.250 M sucrose. Specific activities pH optima and activation energies were determined for hydrolases distributed in various sedimentation fractions and for enzymes solubilized by n-butyl alcohol extraction. Specific activities of the hydrolases revealed the heterogeneity of the Iysosomal fractions relative to enzyme content. pH optima identified the enzyme as acid hydrolases with optima for cathepsin D and aryl sulfatase also at pH 6.8. Activation energies of some hydrolases were low revealing that these enzymes could function efficiently during low temperature aging of meat.

  • PDF