• 제목/요약/키워드: Lysophosphatidylethanolamine

검색결과 8건 처리시간 0.021초

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

  • Lee, Jung-Min;Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.194-201
    • /
    • 2017
  • Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

Lysophosphatidylethanolamine Treatment Delays Leaf Senescence and Improve Fruit Storability in Melon (Cucumis melo L.)

  • Hong, Ji-Heun
    • 원예과학기술지
    • /
    • 제30권2호
    • /
    • pp.158-161
    • /
    • 2012
  • The influence of lysophosphatidylethanolamine (LPE) on anti-senescence of melon leaves and the change in fruit quality during the storage at low temperature were studied. In most of the crops, freshness of leaves is important factor for characteristics of fruits, such as sugar contents, color, and firmness. Melon ($Cucumis$ $melo$ L. cv. Prince) plants were sprayed with LPE at 5 and 3 weeks before commercial harvest. In upper part, LPE treatment showed slight high number of fresh leaf compared to no treatment (None). However, in lower part, LPE resulted in apparent inhibition effect on senescence, showing that lower side of melon plant kept fresh upon LPE application up to about 30%. The SSC of melon treated with LPE was similar to that of fruit from None at harvest. There was no change in soluble solids content (SSC) for all treatment during the storage at $7^{\circ}C$. There were no significant differences in firmness of mesocarp from melons given different treatments at harvest. The firmness of mesocarp from melon treated with LPE was higher than none after 2 weeks storage. The electrolyte leakage means for melon treated with LPE did not differ significantly from the means at initial storage after 2 weeks storage among the treatments. None increased 57% from its initial electrolyte leakage during storage. These results suggest that the application of LPE may have potential to inhibit senescence of leaves and maintain fruit quality during the storage in melon.

Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells

  • Park, Soo-Jin;Lee, Kyoung-Pil;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.129-135
    • /
    • 2014
  • Previously, we reported that lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, can increase intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) via type 1 lysophosphatidic acid (LPA) receptor ($LPA_1$) and CD97, an adhesion G-protein-coupled receptor (GPCR), in MDA-MB-231 breast cancer cells. Furthermore, LPE signaling was suggested as like $LPA_1/CD97-G_{i/o}$ proteins-phospholipase $C-IP_3-Ca^{2+}$ increase in these cells. In the present study, we further investigated actions of LPE not only in the $[Ca^{2+}]_i$ increasing effect but also in cell proliferation and migration in MDA-MB-231 breast cancer cells. We utilized chemically different LPEs and a specific inhibitor of $LPA_1$, AM-095 in comparison with responses in SK-OV3 ovarian cancer cells. It was found that LPE-induced $Ca^{2+}$ response in MDA-MB-231 cells was evoked in a different manner to that in SK-OV3 cells in terms of structural requirements. AM-095 inhibited LPE-induced $Ca^{2+}$ response and cell proliferation in MDA-MB-231 cells, but not in SK-OV3 cells, supporting $LPA_1$ involvement only in MDA-MB-231 cells. LPA had significant effects on cell proliferation and migration in MDA-MB-231 cells, whereas LPE had less or no significant effect. However, LPE modulations of MAPKs (ERK1/2, JNK and p38 MAPK) was not different to those by LPA in the cells. These data support the involvement of LPA1 in LPE-induced $Ca^{2+}$ response and cell proliferation in breast MDA-MB-231 cells but unknown GPCRs (not $LPA_1$) in LPE-induced responses in SK-OV3 cells. Furthermore, although LPE and LPA utilized $LPA_1$, LPA utilized more signaling cascades than LPE, resulting in stronger responses by LPA in proliferation and migration than LPE in MDA-MB-231 cells.

Lysophosphatidylethanolamine (LPE) Improves Fruit Size, Color, Quality and Phytochemical Contents of Sweet Cherry c.v. '0900 Ziraat'

  • Ozgen, Mustafa;Serce, Sedat;Akca, Yasar;Hong, Ji Heun
    • 원예과학기술지
    • /
    • 제33권2호
    • /
    • pp.196-201
    • /
    • 2015
  • Lysophosphatidylethanolamine (LPE) affects the quality of flowers, fruits, and other horticultural products. Studies have provided evidence that LPE can accelerate ripening of fruits and prolong shelf-life at the same time. In this study, the influence of LPE on anthocyanin accumulation and phytochemical characteristics of sweet cherry was investigated. LPE ($10mg{\cdot}L^{-1}$) was applied to a commercial sweet cherry c.v. '0900 Ziraat' orchard two and four weeks before harvest for two treatment years (2011 and 2012). Preharvest applications of LPE resulted in significant improvement in both pomological and phytochemical attributes at harvest. LPE treatment led to a 17% increase in fruit weight and a 6% increase in soluble solid content when averaged over two experimental years. Fruit phytochemical content and antioxidant capacity were increased significantly. The average total phenolic content of LPE-treated fruits for the two years was $703{\mu}g$ gallic acid equivalent (GAE)/g fresh weight (g FW) compared to $569{\mu}g$ GAE/g FW in the untreated control. Fruits treated with LPE had a 27% and 16% more anthocyanin than the control fruits in 2011 and 2012. Antioxidant capacity of fruits, as measured by TEAC (Trolox equivalent antioxidant capacity) assay, was 12.5 and $11.4{\mu}mol$ TE/g FW in LPE-treated and untreated control fruits, respectively, when averaged over two experimental years. Our results suggest that preharvest application of LPE may have the potential to increase anthocyanin accumulation, improve fruit quality and enhance phytochemical characteristics of sweet cherries.

Lipidomic analysis of plasma lipids composition changes in septic mice

  • Ahn, Won-Gyun;Jung, Jun-Sub;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.399-408
    • /
    • 2018
  • A lipidomic study on extensive plasma lipids in bacterial peritonitis (cecal ligation and puncture, CLP)-induced sepsis in mice was done at 24 h post-CLP. The effects of administration of lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), compounds known to have beneficial effects in CLP, on the sepsis-induced plasma lipid changes were also examined. Among the 147 plasma lipid species from 13 lipid subgroups (fatty acid [FA], LPA, LPC, lysophosphatidylethanolamine [LPE], phosphatidic acid [PA], phosphatidylcholine [PC], phosphatidylethanolamine [PE], phosphatidylinositol [PI], monoacylglyceride [MG], diacylglyceride [DG], triacylglyceride [TG], sphingomyelin [SM], and ceramide [Cer]) analyzed in this study, 40 and 70 species were increased, and decreased, respectively, in the CLP mice. Treatments with LPC and LPA affected 14 species from 7 subgroups, and 25 species from 9 subgroups, respectively. These results could contribute to finding the much needed reliable biomarkers of sepsis.

딸기 수확 후 저장기간 연장 및 품질 개선을 위한 LPE (Lysophosphatidylethanolamine) 적정 처리농도 구명 (Determination of Optimal Concentration of LPE (Lysophosphatidylethanolamine) for Postharvest Stability and Quality of Strawberry Fruit)

  • 최기영;김일섭;윤영식;최은영
    • 생물환경조절학회지
    • /
    • 제25권3호
    • /
    • pp.153-161
    • /
    • 2016
  • 본 연구는 딸기 '매향' 품종의 과실을 수확 한 후 LPE 용액에 침지처리 한 뒤 저장기간 동안 당도, 색도, 경도 및 생체중 변화를 조사하여 적정 LPE 처리 농도 및 적정 숙도를 구명하고자 실시하였다. 숙도 70%인 과실을 LPE 0(증류수, 대조구), 10, 50, $100mg{\cdot}L^{-1}$ 농도에 1분간 침지하거나, 딸기 꼭지에서부터 익은 비율로 숙도 0%, 50%, 70%, 100%로 등급화한 후에 LPE 0(증류수, 대조구), 2.5, 5, 10, $25mg{\cdot}L^{-1}$ 농도에 1분간 침지한 후 실온($20^{\circ}C{\pm}1$)에서 40분간 자연건조 한 뒤 $4^{\circ}C$ 저장고에 12일간 저장하였다. 저장 기간 동안 생체중, 종경도, 횡경도, 색도 및 당도 변화를 조사하였다. 숙도 70% 과실을 수확 후 LPE 0, 10, 50, $100mg{\cdot}L^{-1}$ 농도에 침지 후 저장하며 과실의 생체중을 측정하였을 때 처리 농도별 유의차가 없었다. 종경도는 저장 3일째에는 무처리구와 LPE $10mg{\cdot}L^{-1}$ 처리구에서 가장 높았다. 저장 6일째부터 12일까지는 $10mg{\cdot}L^{-1}$ 처리구에서 가장 높았다. 횡경도는 저장 9일째 10과 $50mg{\cdot}L^{-1}$에서 가장 높게 측정되었으나 12일째에는 $10mg{\cdot}L^{-1}$ 처리구는 무처리구와 차이가 없었고 50과 $100mg{\cdot}L^{-1}$에서 가장 낮았다. 색차계 $L^*$$b^*$ 값은 LPE 처리 농도별 저장 기간 별유의차가 없었고, $a^*$ 값은 저장 12일째에 LPE $10mg{\cdot}L^{-1}$ 처리를 포함한 모든 농도에서 무처리구에 비하여 높았다. 숙도 0%, 50%, 70%, 100%로 등급화한 후에 LPE 0(증류수, 대조구), 2.5, 5, 10, $25mg{\cdot}L^{-1}$ 농도에 침지한 후 저장하였을 때 과실 생체중은 LPE 처리농도별 유의차가 없었다. 종경도와 횡경도는 LPE 처리농도와 상관없이 숙도 0% >50%> 70%> 100% 순으로 높았다. LPE 농도 처리에 의한 영향은 종경도는 숙도 70% 과실의 경우 저장 3, 6, 12일째 모두 LPE $5mg{\cdot}L^{-1}$에서 가장 높았고 12일째는 LPE 처리구 모두 무처리구에 비해 높았다. 숙도 100% 과실의 경우 저장 12일째에 LPE $10mg{\cdot}L^{-1}$에서 종경도가 무처리구에 비해 높았지만 $25mg{\cdot}L^{-1}$에서는 종경도 및 횡경도 모두 가장 낮았다. 색차계 L, b 값은 LPE 처리와 관계없이 숙도 0% > 50% > 70% > 100% 순으로 높아 숙도에 따라 유의차가 있었다. 숙도100%에서 가장 낮은 $L^*$$b^*$값이 측정되었다. 숙도 50%와 70% 과실의 경우 저장기간 중 다른 처리구에 비해 $5mg{\cdot}L^{-1}$에서 $L^*$, $b^*$ 값이 가장 높았다. 숙도 100%의 경우 $25mg{\cdot}L^{-1}$에서는 가장 낮은 값을 보여 과숙이 유발된 것으로 판단된다. 색차계 $a^*$ 값은 $L^*$$b^*$와는 반대로 그 값의 증가는 숙도가 높음을 의미하는 것으로 숙도 0, 50, 70, 100% 모두에서 LPE 처리 효과를 구분할 수 없었고, 당도는 처리별, 기간별 유의차가 없었다. 결론적으로, LPE는 저장 중인 딸기 과실의 생체중에 영향을 주지 않으면서 경도 및 색도 변화에는 영향을 주는 것을 알 수 있다. 숙도 70% 과실은 타 숙도에 비해 저장성 증대효과가 크며, 숙도 70%일때 처리농도 LPE $5mg{\cdot}L^{-1}$에서 저장성 증대에 효과적 이였다.

Lipidomic profiling of Skipjack tuna (Katsuwonus pelamis) by ultrahigh-performance liquid chromatography coupled to high resolution mass spectrometry

  • Hu, Lingping;Hu, Zhiheng;Chin, Yaoxian;Yu, Haixia;Xu, Jianhong;Zhou, Jianwei;Liu, Donghong;Kang, Mengli;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • 제25권3호
    • /
    • pp.140-150
    • /
    • 2022
  • A method of ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS) was established for characterization of the lipid profile of Skipjack tuna. Over 300 lipid molecular species were identified through cross-acquisition in both positive and negative ion mode. Phospholipids (PLs) were dominant in Skipjack tuna. Lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) were the main lipid molecular species in PLs, accounting for 89.24% of the total PLs. The ratio of sphingolipids (SLs) and glycerolipids (GLs) were considerable, accounting for 12.30% and 13.60% of the total lipids respectively. Ceramide (Cer) was the main lipid molecular species of SLs, accounting for 64.96% of total SLs, followed by sphingomyelin (SM), accounting for 25.45% of total SLs. Ether diglycerides (ether DG) were the main lipid molecular species of GLs (97.83%). The main fatty acids (FAs) are unsaturated fatty acids (UFAs) in Skipjack tuna. Besides, a new FAs class branched fatty acid esters of hydroxy fatty acids (FAHFA) was detected, together with the FA. The active lipids identified in this study can be used to evaluate the nutritional value of Skipjack tuna.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.