DOI QR코드

DOI QR Code

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

  • Lee, Jung-Min (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Park, Soo-Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
  • Received : 2016.02.25
  • Accepted : 2016.04.22
  • Published : 2017.03.01

Abstract

Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

Keywords

References

  1. Castelino, F. V., Seiders, J., Bain, G., Brooks, S. F., King, C. D., Swaney, J. S., Lorrain, D. S., Chun, J., Luster, A. D. and Tager, A. M. (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405-1415. https://doi.org/10.1002/art.30262
  2. Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
  3. Cowan, A. K. (2009) Plant growth promotion by 18:0-lyso-phosphatidylethanolamine involves senescence delay. Plant Signal. Behav. 4, 324-327. https://doi.org/10.4161/psb.4.4.8188
  4. Heise, C. E., Santos, W. L., Schreihofer, A. M., Heasley, B. H., Mukhin, Y. V., Macdonald, T. L. and Lynch, K. R. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a $LPA_1/LPA_3$ receptor antagonist. Mol. Pharmacol. 60, 1173-1180. https://doi.org/10.1124/mol.60.6.1173
  5. Im, D. S. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin. 31, 1213-1222. https://doi.org/10.1038/aps.2010.135
  6. Leclerc, C., Neant, I. and Moreau, M. (2012) The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front. Mol. Neurosci. 5, 3.
  7. Lee, J. M., Park, S. J. and Im, D. S. (2015) Lysophosphatidylethanolamine increases intracellular $Ca^{2+}$ through $LPA_1$ in PC-12 neuronal cells. Biochem. Biophys. Res. Commun. 461, 378-382. https://doi.org/10.1016/j.bbrc.2015.04.042
  8. Makide, K., Kitamura, H., Sato, Y., Okutani, M. and Aoki, J. (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lyso-phosphatidylthreonine, lysophosphatidylethanolamine and lysophospha-tidylglycerol. Prostaglandins Other Lipid Mediat. 89, 135-139. https://doi.org/10.1016/j.prostaglandins.2009.04.009
  9. Melchior, B. and Frangos, J. A. (2012) Gaq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells. Am. J. Physiol. Cell Physiol. 303, C467-C473. https://doi.org/10.1152/ajpcell.00117.2012
  10. Meylaers, K., Clynen, E., Daloze, D., DeLoof, A. and Schoofs, L. (2004) Identification of 1-lysophosphatidylethanolamine (C(16:1)) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem. Mol. Biol. 34, 43-49. https://doi.org/10.1016/j.ibmb.2003.09.001
  11. Misra, U. K. (1965) Isolation of lysophosphatidylethanolamine from human serum. Biochim. Biophys. Acta 106, 371-378. https://doi.org/10.1016/0005-2760(65)90045-7
  12. Nishina, A., Kimura, H., Sekiguchi, A., Fukumoto, R. H., Nakajima, S. and Furukawa, S. (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J. Lipid Res. 47, 1434-1443. https://doi.org/10.1194/jlr.M600045-JLR200
  13. Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H. and Okajima, F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol. 64, 994-1005. https://doi.org/10.1124/mol.64.4.994
  14. Park, K. S., Kim, M. K., Im, D. S. and Bae, Y. S. (2007a) Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem. Pharmacol. 73, 675-681. https://doi.org/10.1016/j.bcp.2006.11.010
  15. Park, K. S., Lee, H. Y., Lee, S. Y., Kim, M. K., Kim, S. D., Kim, J. M., Yun, J., Im, D. S. and Bae, Y. S. (2007b) Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581, 4411-4416. https://doi.org/10.1016/j.febslet.2007.08.014
  16. Park, S. J., Lee, K. P. and Im, D. S. (2014a) Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells. Biomol. Ther. (Seoul) 22, 129-135. https://doi.org/10.4062/biomolther.2013.110
  17. Park, S. J., Lee, K. P., Kang, S., Chung, H. Y., Bae, Y. S., Okajima, F. and Im, D. S. (2013) Lysophosphatidylethanolamine utilizes $LPA_1$ and CD97 in MDA-MB-231 breast cancer cells. Cell. Signal. 25, 2147-2154. https://doi.org/10.1016/j.cellsig.2013.07.001
  18. Park, S. J., Lee, K. P., Kang, S., Lee, J., Sato, K., Chung, H. Y., Okajima, F. and Im, D. S. (2014b) Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell. Signal. 26, 2249-2258. https://doi.org/10.1016/j.cellsig.2014.07.009
  19. Swaney, J. S., Chapman, C., Correa, L. D., Stebbins, K. J., Broadhead, A. R., Bain, G., Santini, A. M., Darlington, J., King, C. D., Baccei, C. S., Lee, C., Parr, T. A., Roppe, J. R., Seiders, T. J., Ziff, J., Prasit, P., Hutchinson, J. H., Evans, J. F. and Lorrain, D. S. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther. 336, 693-700. https://doi.org/10.1124/jpet.110.175901
  20. Young, K. W., Bootman, M. D., Channing, D. R., Lipp, P., Maycox, P. R., Meakin, J., Challiss, R. A. and Nahorski, S. R. (2000) Lysophosphatidic acid-induced $Ca^{2+}$ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. J. Biol. Chem. 275, 38532-38539. https://doi.org/10.1074/jbc.M006631200
  21. Young, K. W., Challiss, R. A., Nahorski, S. R. and MacKrill, J. J. (1999) Lysophosphatidic acid-mediated $Ca^{2+}$ mobilization in human SHSY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem. J. 343 Pt 1, 45-52. https://doi.org/10.1042/bj3430045
  22. Zhang, Y., Chen, Y. C., Krummel, M. F. and Rosen, S. D. (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914-3924. https://doi.org/10.4049/jimmunol.1201604

Cited by

  1. Lipidomic analysis of serum samples from migraine patients vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0665-0
  2. Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells vol.66, pp.1, 2019, https://doi.org/10.1507/endocrj.EJ18-0343
  3. Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-49010-6
  4. Functional Characterization of the Lin28/let-7 Circuit During Forelimb Regeneration in Ambystoma mexicanum and Its Influence on Metabolic Reprogramming vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.562940
  5. Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage vol.246, pp.None, 2020, https://doi.org/10.1016/j.chemosphere.2019.125704
  6. FFA2 Activation Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice vol.28, pp.3, 2017, https://doi.org/10.4062/biomolther.2019.160
  7. 7α,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes vol.374, pp.1, 2017, https://doi.org/10.1124/jpet.120.264960
  8. Emerging roles of lysophospholipids in health and disease vol.80, pp.None, 2020, https://doi.org/10.1016/j.plipres.2020.101068
  9. PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6683033
  10. Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/7902592
  11. The Anti-Inflammatory Effect of Zhibaidihuang Decoction on Recurrent Oral Ulcer with Sirt1 as the Key Regulatory Target vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/8886699