References
- Castelino, F. V., Seiders, J., Bain, G., Brooks, S. F., King, C. D., Swaney, J. S., Lorrain, D. S., Chun, J., Luster, A. D. and Tager, A. M. (2011) Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405-1415. https://doi.org/10.1002/art.30262
- Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
- Cowan, A. K. (2009) Plant growth promotion by 18:0-lyso-phosphatidylethanolamine involves senescence delay. Plant Signal. Behav. 4, 324-327. https://doi.org/10.4161/psb.4.4.8188
-
Heise, C. E., Santos, W. L., Schreihofer, A. M., Heasley, B. H., Mukhin, Y. V., Macdonald, T. L. and Lynch, K. R. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a
$LPA_1/LPA_3$ receptor antagonist. Mol. Pharmacol. 60, 1173-1180. https://doi.org/10.1124/mol.60.6.1173 - Im, D. S. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin. 31, 1213-1222. https://doi.org/10.1038/aps.2010.135
- Leclerc, C., Neant, I. and Moreau, M. (2012) The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front. Mol. Neurosci. 5, 3.
-
Lee, J. M., Park, S. J. and Im, D. S. (2015) Lysophosphatidylethanolamine increases intracellular
$Ca^{2+}$ through$LPA_1$ in PC-12 neuronal cells. Biochem. Biophys. Res. Commun. 461, 378-382. https://doi.org/10.1016/j.bbrc.2015.04.042 - Makide, K., Kitamura, H., Sato, Y., Okutani, M. and Aoki, J. (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lyso-phosphatidylthreonine, lysophosphatidylethanolamine and lysophospha-tidylglycerol. Prostaglandins Other Lipid Mediat. 89, 135-139. https://doi.org/10.1016/j.prostaglandins.2009.04.009
- Melchior, B. and Frangos, J. A. (2012) Gaq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells. Am. J. Physiol. Cell Physiol. 303, C467-C473. https://doi.org/10.1152/ajpcell.00117.2012
- Meylaers, K., Clynen, E., Daloze, D., DeLoof, A. and Schoofs, L. (2004) Identification of 1-lysophosphatidylethanolamine (C(16:1)) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem. Mol. Biol. 34, 43-49. https://doi.org/10.1016/j.ibmb.2003.09.001
- Misra, U. K. (1965) Isolation of lysophosphatidylethanolamine from human serum. Biochim. Biophys. Acta 106, 371-378. https://doi.org/10.1016/0005-2760(65)90045-7
- Nishina, A., Kimura, H., Sekiguchi, A., Fukumoto, R. H., Nakajima, S. and Furukawa, S. (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J. Lipid Res. 47, 1434-1443. https://doi.org/10.1194/jlr.M600045-JLR200
- Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H. and Okajima, F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol. 64, 994-1005. https://doi.org/10.1124/mol.64.4.994
- Park, K. S., Kim, M. K., Im, D. S. and Bae, Y. S. (2007a) Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem. Pharmacol. 73, 675-681. https://doi.org/10.1016/j.bcp.2006.11.010
- Park, K. S., Lee, H. Y., Lee, S. Y., Kim, M. K., Kim, S. D., Kim, J. M., Yun, J., Im, D. S. and Bae, Y. S. (2007b) Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581, 4411-4416. https://doi.org/10.1016/j.febslet.2007.08.014
- Park, S. J., Lee, K. P. and Im, D. S. (2014a) Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells. Biomol. Ther. (Seoul) 22, 129-135. https://doi.org/10.4062/biomolther.2013.110
-
Park, S. J., Lee, K. P., Kang, S., Chung, H. Y., Bae, Y. S., Okajima, F. and Im, D. S. (2013) Lysophosphatidylethanolamine utilizes
$LPA_1$ and CD97 in MDA-MB-231 breast cancer cells. Cell. Signal. 25, 2147-2154. https://doi.org/10.1016/j.cellsig.2013.07.001 - Park, S. J., Lee, K. P., Kang, S., Lee, J., Sato, K., Chung, H. Y., Okajima, F. and Im, D. S. (2014b) Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell. Signal. 26, 2249-2258. https://doi.org/10.1016/j.cellsig.2014.07.009
- Swaney, J. S., Chapman, C., Correa, L. D., Stebbins, K. J., Broadhead, A. R., Bain, G., Santini, A. M., Darlington, J., King, C. D., Baccei, C. S., Lee, C., Parr, T. A., Roppe, J. R., Seiders, T. J., Ziff, J., Prasit, P., Hutchinson, J. H., Evans, J. F. and Lorrain, D. S. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther. 336, 693-700. https://doi.org/10.1124/jpet.110.175901
-
Young, K. W., Bootman, M. D., Channing, D. R., Lipp, P., Maycox, P. R., Meakin, J., Challiss, R. A. and Nahorski, S. R. (2000) Lysophosphatidic acid-induced
$Ca^{2+}$ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. J. Biol. Chem. 275, 38532-38539. https://doi.org/10.1074/jbc.M006631200 -
Young, K. W., Challiss, R. A., Nahorski, S. R. and MacKrill, J. J. (1999) Lysophosphatidic acid-mediated
$Ca^{2+}$ mobilization in human SHSY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem. J. 343 Pt 1, 45-52. https://doi.org/10.1042/bj3430045 - Zhang, Y., Chen, Y. C., Krummel, M. F. and Rosen, S. D. (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914-3924. https://doi.org/10.4049/jimmunol.1201604
Cited by
- Lipidomic analysis of serum samples from migraine patients vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0665-0
- Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells vol.66, pp.1, 2019, https://doi.org/10.1507/endocrj.EJ18-0343
- Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-49010-6
- Functional Characterization of the Lin28/let-7 Circuit During Forelimb Regeneration in Ambystoma mexicanum and Its Influence on Metabolic Reprogramming vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.562940
- Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage vol.246, pp.None, 2020, https://doi.org/10.1016/j.chemosphere.2019.125704
- FFA2 Activation Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice vol.28, pp.3, 2017, https://doi.org/10.4062/biomolther.2019.160
- 7α,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes vol.374, pp.1, 2017, https://doi.org/10.1124/jpet.120.264960
- Emerging roles of lysophospholipids in health and disease vol.80, pp.None, 2020, https://doi.org/10.1016/j.plipres.2020.101068
- PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6683033
- Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/7902592
- The Anti-Inflammatory Effect of Zhibaidihuang Decoction on Recurrent Oral Ulcer with Sirt1 as the Key Regulatory Target vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/8886699