• Title/Summary/Keyword: Lyocell fiber

Search Result 30, Processing Time 0.023 seconds

A study on the application and manufacture of paper sheet containing lyocell fiber( I ) (Lyocell 섬유를 함유한 종이의 제조 및 적용에 관한 연구( I ))

  • 김종열;류운형;유성종;김정열;신창호;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • In order to investigate the applicability of lyocell fiber to filter paper, papper sheets were manufactured with the addition of lyocell fibers in various length(1.5 denier: 2, 3, 4mm) and content(10, 30, 50%) and their physical characters, such as fibrilation rate, adsorption efficiency of methylene blue(MB), paper formation, and crimping ability, etc, were tested. The level of main fibrilation from lyocell fiber was higher in wet beating process than that in free beating because of the higher strength of lyocell fiber compared with wood fiber. Fibrilation could be observed at the degree of beating over 30$^{\circ}$ SR in wet beating with Valley beater. The air permeability and tear factor of the paper increased and the paper formation index decreased according to the increase of fiber length. The weak binding force of lyocell fiber in spite of its higher fiber strength, might be a limitng factor in addition of lyocell fiber to the natural wood pulp in manufacturing the paper having the needed physical properties. High contents of wood pulp decreased air permeability, the breaking length, tear factor, the bursting strength, and paper formation index in paper sheets. As the contents of lyocell increased from 10% to 100%, the adsorption efficiency of MB was elevated to 1.7-7.9 times compared with that in 100% wood pulp. But the length of lyocell fiber did not affect the MB adsorption.

  • PDF

Swelling and Fibrillation of Lyocell Fibers in Water and NaOH Solution (Lyocell 섬유소재의 알칼리 팽윤과 피브릴화 거동)

  • Min, Byung-Ghyl;Jeong, Young-Jin;Kim, Chang-Whan;Oh, Young-Sae
    • Fashion & Textile Research Journal
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • Swelling and fibrillation of two kinds of lyocell, $Tencel^{(R)}$ and $Lyocell^{(R)}$, were investigated using polarizing and scanning electron microscope (SEM). $Tencel^{(R)}$ of a representative lyocell showed that loop tenacity which is related to wrinkle and resilience of fiber does not show significant reduction in wet state. Two kinds of lyocell exhibited surprising degree of swelling in aqueous NaOH solution under free tension. Diameters of $Tencel^{(R)}$ and $Lyocell^{(R)}$ swelled up to 670% and 830%, respectively in the range of around 10% NaOH concentration. Molecular orientation estimated by birefringence also reduced remarkably in alkaline solution. Moreover, diameter and birefringence which changed in alkaline solution did not recovered to original level even after washing and drying. Fibrillation of $Lyocell^{(R)}$ fiber observed by SEM seems to be easier than that of $Tencel^{(R)}$. In order to understand the difference between $Tencel^{(R)}$ and $LyoceJl^{(R)}$, further study on the structure of the two fibers will be followed.

  • PDF

Preparation of Characterization of Lyocell Fiber Containing Hydrolyzed Starch-g-PAN Superabsorbent (전분계 고흡수제를 함유한 Lyocell 섬유의 제조 및 물성 (I))

  • 임경율;김경숙;김병철;윤기종
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.211-214
    • /
    • 2002
  • 셀룰로오즈/아민 옥사이드(NMMO) 수화물 계로부터 제조되는 Lyocell 섬유는 기존의 재생 셀룰로오즈 섬유에 비해 우수한 인장특성과 촉감을 가지고 있다. 특히 이것은 용매의 무독성, 재활용 및 부산물 억제와 같은 환경 친화적인 제조공정으로 인하여 새로운 섬유 소재로 부각되고 있다[1]. 그러나 높은 배향도와 피브릴간의 약한 결합력으로 인하여 섬유 표면의 과도한 피브릴이 형성되고 이는 염색가공시 많은 문제를 일으키는 것으로 알려져 있다. (중략)

  • PDF

Swelling and Shrinking Behavior of Lyocell Fibers

  • Donkai, Nobuo;Sasaki, Hiroari;Kasahara, Katsuji
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.17-18
    • /
    • 2003
  • Swelling behaviors of Lyocell and Polynosic fibers are investigated by measuring fiber sizes in ferric sodium tartrate complex (FeTNa) and NaOH solution. They showed an anisotropic swelling behavior, i.e., a large expansion in a radius and small shrinking in a longitudinal direction. Birefringent structure was maintained in Lyocell fibers in the swollen state but not in Polynosic fibers for both solvent systems.

  • PDF

Fibril Removal from Lyocell by Enzymatic Treatment -Compare NaOH Pre-treatment with Treating Enzyme (전처리에 의한 리오셀의 피브릴레이션 변화 -NaOH와 효소 처리 중심으로-)

  • Park, Ji-Yang;Kim, Ju-Hea;Jeon, Dong-Won;Park, Young-Hwan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1323-1332
    • /
    • 2006
  • Lyocell is a regenerated cellulose fiber manufactured by an environmentally-friendly process. Since the fiber has more crystalline region compared to rayon, lyocell shows higher wet-strength than rayon. Although fibril generation of lyocell is lower than that of rayon because of the reason, the fibril generated during the wet process deteriorates the smooth look and soft touch of the fabric. The efficient way to remove the fibril yet retain the strength property was investigated in this work. In order to scour and remove the fibril from the fabric, cellulase enzymes were introduced and the traditional scouring was carried to be compared. Weight loss, dye-ability, and strength of treated fabric were measured after the treatments. Scanning electron microscopy was used to observe the surface of the fiber. Among the cellulases used in this work, Denimax 992L showed the best results for removal of fibril with low weight loss and tensile strength loss. The optimal conditions for the enzymatic treatment could be chosen depending on a characteristic for final purpose of the lyocell product.

The Effect of Number of Twists of Lyocell Yarns on Compression Property and Abrasion Resistance Blanket Fabrics (라이오셀방적사의 꼬임수에 따른 담요직물의 압축특성과 마모강도)

  • Song, Min-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.363-369
    • /
    • 2006
  • In this the study, Lyocell fabrics for blanket were developed to get high value added goods for elder and Infant. Therefore, the purpose of the study was determine the effect of twist per inch on the physical properties of developed fabrics, including compression property and abrasion resistance on the process for making Lyocell combined yarns. For comparison, commonly used cotton blanket was used. The results were as the follows: 1) Dimensional changes of Lyocell fabrics was in -3% which value was pretty stable, and antistatic property was very good with 10V of electric propensity voltage which means there was no static electricity at all. Pilling property of Lyocell fabrics showed 3 grade which was good and air permeability and moisture vapor transmission rate of Lyocell fabrics were higher than those of cotton fabric and keeping warmth rate of Lyocell fabrics was about 50% which means it very warms. 2) Twist per inch of Lyocell combined yarns increased with tensile strength and elongation of Lyocell fabrics. 3) Twist per inch of Lyocell combined yarns increased with decreasing thickness reduction rate and therefore, compression property of those was pretty good. Specially, compression property of Lyocell fabrics made with yarns of 3.9TPI was better than those of cotton fabric. 4) Twist per inch of Lyocell combined yarns increased with abrasion resistance of Lyocell fabrics.

Physical Property and Virtual Sewing Image of Lyocell treated with Epichlorohydrine for the fibrillation control

  • Park, Ji-Yang;Jeon, Dong-Won;Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.46-60
    • /
    • 2008
  • Lyocell is a regenerated cellulosic fiber manufactured by an environmentally friendly process. The major advantages of lyocell are the excellent drape forming property, the genuine bulkiness, smooth surface, and high dry/wet tenacities. However, one drawback of lyocell is its fibrillation property, which would degrade its aesthetic quality and lower the consumer satisfaction. In our previous studies, lyocell was treated with epichlorohydrin, a non-formalin based crosslinker, to reduce its fibrillation tendency. To investigate the changes of physical properties upon ECH-treatment, the hand characteristics of ECH-treated fabric were observed using KES-FB system and the 3D-virtual sewing image of the fabrics were obtained using 3D CAD simulation system in this study. Since epichlorohydrin(ECH) treatment was conducted in the alkaline medium, the weight reduction was observed in all treated lyocell. The treated lyocell became light, smooth and flexible in spite of ECH crosslinker application. LT and RT in tensile property upon the ECH treatment did not change significantly, however, EMT and WT in the tensile property increased. The significant decrease in bending rigidity was resulted in all ECH-treated lyocell, which is the result of the weight loss upon the alkali condition of ECH treatment. The bending rigidity increased again in the ECH 30% treated lyocell, however, the B value is still lower than the original. Therefore, the ECH-treated lyocell would be more stretchable and softer than the original. Shear rigidity was also decreased in all ECH-treated lyocell, which would result in more drape and body fitting when it is made as a garment. The ECH-treated fabric showed the softer smoother surface according to SMD value from KES evaluation. The virtual 3D sewing image of the ECH-treated lyocell did not show a significant change from that of the original except ECH 30% treated lyocell. ECH 30% treated lyocell showed a stiffer and more puckered image than the original.

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.