• Title/Summary/Keyword: Lyapunov equation

Search Result 177, Processing Time 0.023 seconds

New Upper Bounds for the CALE: A Singular Value Decomposition Approach

  • Savov, Svetoslav G.;Popchev, Ivan P.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.288-294
    • /
    • 2008
  • Motivated by the fact that upper solution bounds for the continuous Lyapunov equation are valid under some very restrictive conditions, an attempt is made to extend the set of Hurwitz matrices for which such bounds are applicable. It is shown that the matrix set for which solution bounds are available is only a subset of another stable matrices set. This helps to loosen the validity restriction. The new bounds are illustrated by examples.

A New Stability Criterion of a Class of Neutral Differential Equations (뉴트럴 미분방정식의 새로운 안정성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2023-2026
    • /
    • 2007
  • In this letter, the problem for a class of neutral differential equation is considered. Based on the Lyapunov method, a stability criterion, which is delay-dependent on both ${\tau}\;and\;{\sigma}$, is derived in terms of linear matrix inequality (LMI). Two numerical examples are carried out to support the effectiveness of the proposed method.

STABILITY OF BIFURCATING STATIONARY PERIODIC SOLUTIONS OF THE GENERALIZED SWIFT-HOHENBERG EQUATION

  • Soyeun, Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.257-279
    • /
    • 2023
  • Applying the Lyapunov-Schmidt reduction, we consider spectral stability of small amplitude stationary periodic solutions bifurcating from an equilibrium of the generalized Swift-Hohenberg equation. We follow the mathematical framework developed in [15, 16, 19, 23] to construct such periodic solutions and to determine regions in the parameter space for which they are stable by investigating the movement of the spectrum near zero as parameters vary.

New Unified bounds for the solution of the Lyapunov matrix equation for Decentralized Singularly Perturbed Unified System (분산 특이변동 시스템의 리아푸노프 행렬 방정식의 해에 대한 단일 경계치)

  • Lee, Dong-Gi;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • In this paper, new bounds for the solution of the unified Lyapunov matrix equation for decentralized singularly perturbed systemare obtained, and some of the existing works using deficient assumptions are also generalized.

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

chaotic behavior analysis in the mobile robot : the case of Arnold equation

  • Kim, Youngchul;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.110-113
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line

  • Kim Chang-Won;Park Hahn;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.601-611
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the Lyapunov second method. The exponential stability of the closed-loop system is verified. The effectiveness of the proposed control law is simulated.