• Title/Summary/Keyword: Lyapunov Stability Analysis

Search Result 236, Processing Time 0.034 seconds

Design Robust Fuzzy Model-Based Controller for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 강인한 퍼지 모델 기반 제어기)

  • Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.407-414
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex uncertain single-input single-output nonlinear systems. The proposed method represents the nonlinear system using a Takagi-Cugeno fuzzy model and construct a global fuzzy logic controller by blending all local state feedback controllers with a sliding mode controller. Unlike the commonly used parallel distributed compensation technique, we can design a global stable fuzzy controller without finding a common Lyapunov function for all local control systems, and can obtain good tracking performance by using sliding mode control theory. Furthermore, stability analysis is carried out not for the fuzzy model but for the real nonlinear system with uncertainties. Duffing forced oscillation sysmte is used as an example to show the effectiveness and feasibility of the proposed method.

  • PDF

The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System (SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Parameter convergence properties for MRAC system with a constant reference signal tracking (일정한 기준신호를 추적하는 MRAC시스템에 대한 파라미터 수렴특성)

  • 민병태;김성덕;양해원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • In this paper, the boundedness of adjustable parameters for the model reference adaptive control(MRAC) system using a constant reference signal is discussed. This analysis is motivated by that it is possibel to verify the existence, boundedness and bounded range of the parameter as well as the stability of the adaptive system with an alternative propoerty of Lyapunov function. For two adaptive laws; a general gradient mothod(GGM) and a least square method(LSM), unique solution set in parameter space can be estabilished by a new approach suggeste here. Computer simulation results to show the effect of parameter space analysis are also examined.

  • PDF

MATHEMATICAL ANALYSIS OF AN "SIR" EPIDEMIC MODEL IN A CONTINUOUS REACTOR - DETERMINISTIC AND PROBABILISTIC APPROACHES

  • El Hajji, Miled;Sayari, Sayed;Zaghdani, Abdelhamid
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.45-67
    • /
    • 2021
  • In this paper, a mathematical dynamical system involving both deterministic (with or without delay) and stochastic "SIR" epidemic model with nonlinear incidence rate in a continuous reactor is considered. A profound qualitative analysis is given. It is proved that, for both deterministic models, if ��d > 1, then the endemic equilibrium is globally asymptotically stable. However, if ��d ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Concerning the stochastic model, the Feller's test combined with the canonical probability method were used in order to conclude on the long-time dynamics of the stochastic model. The results improve and extend the results obtained for the deterministic model in its both forms. It is proved that if ��s > 1, the disease is stochastically permanent with full probability. However, if ��s ≤ 1, then the disease dies out with full probability. Finally, some numerical tests are done in order to validate the obtained results.

A Novel Space Vector modulation Scheme and Direct Torque Control for Four-switch BLDCM Using Flux Observer

  • Pan, Lei;Wang, Beibei;Su, Gang;Cheng, Baohua;Peng, Guili
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.251-260
    • /
    • 2015
  • The main purpose of this paper is to describe a DTC (direct torque control) method for four-switch brushless dc motor (BLDCM) drive. In the method, a novel voltage space vector modulation scheme, an optimal switching table, and a flux observation method are proposed. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern, and an optimal switching table is proposed to improve the torque distortion caused by midpoint current of the split capacitors. Unlike conventional flux observers, this observer does not require speed adaptation and is not susceptible to speed estimation errors, especially, at low speed. Global asymptotic stability of the flux observer is guaranteed by the Lyapunov stability analysis. DC-offset effects are mitigated by introducing a PI component in the observer gains. This method alleviates the undesired current and torque distortion which is caused by uncontrollable phase. The correctness and feasibility of the method are proved by simulation and experimental results.

Group Average-consensus and Group Formation-consensus for First-order Multi-agent Systems (일차 다개체 시스템의 그룹 평균 상태일치와 그룹 대형 상태일치)

  • Kim, Jae Man;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1225-1230
    • /
    • 2014
  • This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages (제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어)

  • Shin, Jin-Ho;Kim, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.