Lee, Minji;Song, Yeonhwa;Choi, Inhee;Lee, Su-Yeon;Kim, Sanghwa;Kim, Se-Hyuk;Kim, Jiho;Seo, Haeng Ran
Molecules and Cells
/
제44권1호
/
pp.50-62
/
2021
Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.
Background: The purpose of this study was to investigate Tim-3 expression on peripheral CD3-CD56+ natural killer (NK) cells and CD3+CD56+ natural killer T (NKT) cells in lung cancer patients. Materials and Methods: We analyzed Tim-3+CD3-CD56+ cells, Tim-3+CD3-$CD56^{dim}$ cells, Tim-3+CD3-$CD56^{bright}$ cells, and Tim-3+CD3+CD56+ cells in fresh peripheral blood from 79 lung cancer cases preoperatively and 53 healthy controls by flow cytometry. Postoperative blood samples were also analyzed from 21 members of the lung cancer patient cohort. Results: It was showed that expression of Tim-3 was significantly increased on CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in lung cancer patients as compared to healthy controls (p=0.03, p=0.03 and p=0.04, respectively). When analyzing Tim-3 expression with cancer progression, results revealed more elevated Tim-3 expression in CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in cases with advanced stages (III/IV) than those with stage I and II (p=0.02, p=0.04 and p=0.01, respectively). In addition, Tim-3 expression was significantly reduced on after surgical resection of the primary tumor (p<0.01). Conclusions: Tim-3 expression in natural killer cells from fresh peripheral blood may provide a useful indicator of disease progression of lung cancer. Furthermore, it was indicated that Tim-3 might be as a therapeutic target.
Lung cancer is one of the cancers with high mortality and incidence rates worldwide. Although, various anticancer research efforts are underway to completely treat cancer, the challenge against it remains in the inability to eliminate cancer stem cells (CSCs), leading to difficulties in curing the cancer and resulting in recurrence. As a result, there is a growing interest in the discovery of new biomarkers and therapeutic molecules that can simultaneously target both cancer cells and CSCs. From this point of view, we focused on fibronectin leucine rich transmembrane protein 3 (FLRT3), one of the genes known to be present in human lung cells and the discovery from our previous cancer proteomic analysis study. This study aimed to evaluate the potential of FLRT3 as a specific therapeutic biomarker for lung cancer and Lung Cancer-derived-Stem Cells (LCSC). Also, to estimate the biological function of FLRT3 in cancer and LCSC, short hairpin RNA (shRNA) was generated and showed the ability of the decreased-cell migration and cell proliferation of lung cancer through ERK signaling pathway when FLRT3 was knock-downed. In conclusion, our study is the first to report that FLRT3 has the potential as therapeutic biomarker for the treatment of lung cancer and LCSC.
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a principal component of cigarette smoke. B[a]P can cause lung carcinogenesis and plays a key role in lung cancer progression. The role of B[a]P has been reported in lung cancer, but its effects on lung cancer stem cells (CSCs) have not been investigated. Emerging evidence indicates that CSCs are associated with carcinogenesis, tumor initiation, relapse, and metastasis. Therefore, targeting CSCs to defeat cancer is a challenging issue in the clinic. This study explored whether B[a]P alters gene expression in lung cancer cells and CSCs. The lung adenocarcinoma A549 cell line was used to investigate the role of B[a]P on lung cancer cells and lung CSCs using microarray and quantitative PCR. B[a]P ($1{\mu}M$) provoked gene expression changes in A549 cancer cells and CSCs by deregulating numerous genes. Gene pathway analysis was performed using GeneMANIA and GIANT. We identified genes that were coexpressed and showed physical interactions. These findings improve our understanding of the mechanism of B[a]P in lung cancer and cancer stem cells and can be an attractive therapeutic target.
Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.
Chemoresistance remains the major obstacle to successful therapy of cancer. In order to understand the mechanism of multidrug resistance (MDR) that is frequently observed in lung cancer patients, here we studied the contribution of MDR-related proteins by establishing lung cancer cell lines with acquired resistance against etoposide. We found that human H460 lung cancer cells responded to etoposide more sensitively than A549 cells. Among MDR-related proteins, the expression of p-glycoprotein (Pgp) and lung resistance protein (LRP) were much higher in A549 cells compared with that in H460 cells. When we established H460-R1 and -R2 cell lines by progressive exposure of H460 cells to increasing doses of etoposide, the response against etopbside as well as doxorubicin was greatly reduced in R1 and R2 cells, suggesting MDR induction. Induction of MDR was not accompanied by a decrease in the intracellular accumulation of etoposide and the expression of MDR-related proteins that function as drug efflux pumps such as Pgp and MRP1 was not changed. We found that the acquired resistance paralleled an increased expression of LRP in H460 cells. Taken together, our data suggest the implicative role of LRP in mediating MDR in lung cancer.
Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelial-mesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.
GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of $G{\alpha}q$-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer.
The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.
HYEON-OK JIN;SUNG-EUN HONG;JI-YOUNG KIM;MI-RI KIM;YOON HWAN CHANG;YOUNG JUN HONG;JIN KYUNG LEE;IN-CHUL PARK
Oncology Letters
/
제41권5호
/
pp.3119-3126
/
2019
Redd1 is a stress response protein that functions as a repressor of mTORC1, a central regulator of protein translation, resulting in the inhibition of cell growth and metabolism. However, paradoxically, high Redd1 expression favors cancer progression and generates resistance to cancer therapy. Herein, we revealed that constitutive overexpression of Redd1 induced HSP27 and HSP70 expression in lung cancer cells. The expression of Redd1, HSP27 and HSP70 was highly increased in lung cancer tissues compared with that in normal lung tissues. Inhibition of HSP27 or HSP70 suppressed AKT phosphorylation, which was induced by constitutive overexpression of Redd1 and enhanced the inhibitory effects on viability of Redd1-overexpressing cells. Inhibition of AKT phosphorylation resulted in a decrease of HSP27 and HSP70 expression in Redd1-overexpressing cells. These data indicated that HSPs and AKT in Redd1-overexpressing cells positively regulated the function and expression of each other and were involved in lung cancer cell survival. Knockdown of HSP27, HSP70 or AKT enhanced ionizing radiation (IR) sensitivity, particularly in lung cancer cells in which Redd1 was stably overexpressed. Collectively, constitutive overexpression of Redd1 led to HSP27 and HSP70 induction and AKT activation, which were involved in lung cancer cell survival and resistance to IR, suggesting that Redd1 may be used as a therapeutic target for lung cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.