• Title/Summary/Keyword: Lunar exploration satellite

Search Result 27, Processing Time 0.027 seconds

The Transition Effect of Korea's Space Development

  • Kim, Jong-bum
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • In the 1990s, South Korea recently launched Space Development and is pushing for a step toward Space. In the Space Launch Vehicle field, the development of Practical satellite type Launch Vehicle (Korea Space Launch Vehicle II) has progressed to the stage of proprietary development, and in the field of Satellite development, they also have a great deal of competitiveness. This study will be a shortcut to rediscovering our potential and looking for breakthroughs by reviewing and re-examining the effects of past Space development.

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.

Analysis Distribution and Feature of Lunar Gravity Field Using SGM90d Model (SGM90d모델을 이용한 달 중력장 분포 및 특징 분석)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • The lunar gravity field is an important source to understand the lunar interior structure, dichotomy and magma ocean of the moon, furthermore it can be used to study the origin and evolution history of the moon. In this paper, we firstly investigated the history of lunar exploration were performed for determining the lunar gravity field, in addition to investigating the procedure of progress related with the lunar gravity field model and gravity observations techniques. After, we determined practically the gravity anomalies of the moon using the new lunar gravity model, SGM90d (SELENE Gravity Model), which were developed by processing the tracking data from SELENE, the japanese lunar mission. Finally, we compared the lunar gravity anomalies from SGM90d model to the those from existing lunar gravity model (LP165P). As results from the comparison, we can make a sense that 4-way Doppler observations of SELENE is very effective to measure the gravity field on the farside of the moon. The precise lunar gravity field model including the farside of the moon which can be more helpful to understand the dichotomy of moon and to establish the detailed distribution of lunar gravity field, such as a mascon.

Study on Downlink Capacity based on the Visibility Analysis between KPLO and KDSA/DSN (시험용 달 궤도선과 KDSA 및 DSN 간 가시성 분석을 통한 다운링크 용량 연구)

  • Kim, Changkyoon;Jeon, Moon-Jin;Lee, Sang-Rok;Lim, Seong-Bin
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2016
  • KARI(Korea Aerospace Research Institute) has been developing the KPLO(Korea Pathfinder Lunar Orbiter) for Korean first lunar exploration, and analysing various subjects for the mission success. Especially the performance of the communication is one of important factors, because massive scientific and technical data acquired by multiple payloads might be transferred to ground stations on the Earth. In this paper, we explained the study on the 1-day average downlink capacity based on the visibility analysis between ground stations and KPLO, and described its results.

On-orbit Thermal Analysis for Verification of Thermal Design of Korea Pathfinder Lunar Orbiter (시험용 달 궤도선의 열설계 검증을 위한 궤도 열해석)

  • Jang, Byung-Kwan;Lee, Jang-Joon;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1028-1036
    • /
    • 2018
  • KARI plans to launch Korea Pathfinder Lunar Orbiter (KPLO) to the Moon by December 2020 for the first step of the Korea Lunar Exploration Project. This orbiter will be launched to obtain lunar exploration technologies and science data in advance before launching a main orbiter and a lunar probe. This paper describes the verification of thermal design for the orbiter. It is exposed to more extreme thermal environment than that of low Earth orbit satellite due to the heavy infrared emission of the Moon. Accordingly, a thermal design considering this environment is needed to maintain the temperature of payloads and components equipped in the orbiter within operating temperature range in all orbits. We performed the thermal analysis for Earth-Moon transfer orbit, lunar mission orbit and lunar eclipse required for thermal design verification of the lunar orbiter. As a result, this thermal design met the design requirements.

Preflight Calibration Results of Wide-Angle Polarimetric Camera (PolCam) onboard Korean Lunar Orbiter, Danuri

  • Minsup Jeong;Young-Jun Choi;Kyung-In Kang;Bongkon Moon;Bonju Gu;Sungsoo S. Kim;Chae Kyung Sim;Dukhang Lee;Yuriy G. Shkuratov;Gorden Videen;Vadym Kaydash
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.293-299
    • /
    • 2023
  • The Wide-Angle Polarimetric Camera (PolCam) is installed on the Korea's lunar orbiter, Danuri, which launched on August 5, 2022. The mission objectives of PolCam are to construct photometric maps at a wavelength of 336 nm and polarization maps at 461 and 748 nm, with a phase angle range of 0°-135° and a spatial resolution of less than 100 m. PolCam is an imager using the push-broom method and has two cameras, Cam 1 and Cam 2, with a viewing angle of 45° to the right and left of the spacecraft's direction of orbit. We conducted performance tests in a laboratory setting before installing PolCam's flight model on the spacecraft. We analyzed the CCD's dark current, flat-field frame, spot size, and light flux. The dark current was obtained during thermal / vacuum test with various temperatures and the flat-field frame data was also obtained with an integrating sphere and tungsten light bulb. We describe the calibration method and results in this study.

Performance Analysis on Delay- and Disruption-Tolerant Network in Interplanetary Network (행성 간 통신에서의 지연/분열 허용 네트워크 성능 분석)

  • Baek, Jaeuk;Han, Sang Ik;Kim, In-kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.42-49
    • /
    • 2017
  • Delay- and Disruption-Tolerant Network (DTN) has been considered as a key technology to overcome main challenges in interplanetary communications such as an intermittent connectivity and high bit error rates. The lack of end-to-end connectivity between source and destination results in long and variable delays and data loss, hence the Internet Protocols cannot operate properly in such environments because it requires an end-to-end connectivity. The DTN, which utilizes 'store-and-forward' message passing scheme between nodes, can overcome the lack of end-to-end connectivity in Interplanetary Network (IPN). In this paper, DTN is applied to 3-hop relay IPN, where messages are transmitted from Earth ground station to Lunar lander through Earth satellite and Lunar orbiter. ONE simulator is used to reflect the real environment of IPN and an efficient resource management method are analyzed to guarantee the message delivery by optimizing a message TTL (Time to Live), buffer size and message fragmentation.

Status of Navigation Satellite System Services and Signals (위성항법시스템 서비스 및 신호 현황)

  • K. Han;E. Bang;H. Lim;S. Lee;S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.12-25
    • /
    • 2023
  • Positioning, navigation, and timing information has become a key element in the national core infrastructure and for emerging technologies, such as autonomous driving, lunar exploration, financial systems, and drones. Therefore, the provision of that information by navigation satellite systems is becoming increasingly important. Existing systems such as GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), and BDS (BeiDou Navigation Satellite System) also provide augmentation, safety-of-life, search & rescue and short message communication and authentication services to increase their competitiveness. Those services and the signals generated for their provision have their own purpose and requirements. This article presents an overview of existing or planned satellite navigation satellite system services and signals, aiming to help understand their current status.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.