Analysis Distribution and Feature of Lunar Gravity Field Using SGM90d Model

SGM90d모델을 이용한 달 중력장 분포 및 특징 분석

  • 황학 (성균관대학교 건설환경연구소) ;
  • 윤홍식 (성균관대학교 사회환경시스템공학과) ;
  • 이동하 (성균관대학교 건설환경시스템공학과)
  • Published : 2009.04.30

Abstract

The lunar gravity field is an important source to understand the lunar interior structure, dichotomy and magma ocean of the moon, furthermore it can be used to study the origin and evolution history of the moon. In this paper, we firstly investigated the history of lunar exploration were performed for determining the lunar gravity field, in addition to investigating the procedure of progress related with the lunar gravity field model and gravity observations techniques. After, we determined practically the gravity anomalies of the moon using the new lunar gravity model, SGM90d (SELENE Gravity Model), which were developed by processing the tracking data from SELENE, the japanese lunar mission. Finally, we compared the lunar gravity anomalies from SGM90d model to the those from existing lunar gravity model (LP165P). As results from the comparison, we can make a sense that 4-way Doppler observations of SELENE is very effective to measure the gravity field on the farside of the moon. The precise lunar gravity field model including the farside of the moon which can be more helpful to understand the dichotomy of moon and to establish the detailed distribution of lunar gravity field, such as a mascon.

달 중력장은 달의 내부구조와 이분성 및 마그마 바다의 분화 진화과정을 이해하고, 더 나아가 달의 기원과 진화를 규명하기 위한 중요한 자료이다. 본 연구에서는 달 탐사의 역사와 달의 중력장 탐지 및 중력장모델의 발전과정을 고찰하였으며, 최근에 임무를 종료한 일본의 SELENE위성의 관측방식을 소개하고, SELENE위성의 궤도추적자료를 처리하여 개발된 달 중력장모델 SGM90d(SELENE Gravity Model)를 이용해 달 전체의 중력이상을 결정하였으며, 기존의 달 중력장 모델인 LP165P모델과 비교분석을 수행하였다. SGM90d를 분석해 본 결과, SELENE위성의 4중 도플러 관측방식은 달 뒷면의 중력장 직접 관측에 매우 효과적이었으며, 달 뒷면 중력장의 최초 결정은 달의 메스콘과 같은 중력이상의 상세한 분포를 확인하고 달의 이분성을 이해하는데 큰 도움이 되었다.

Keywords

References

  1. Araki, H., Tazawa, S., Noda, H. and Ishihara, Y. et al. (2009),Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry, Science, Vol. 323, No.5916, pp. 897-900 https://doi.org/10.1126/science.1164146
  2. Bhandari N. (2005), Chandrayaan-1: Science goals, Journal of Earth System Science, Vol. 114, No. 6, pp. 701-709 https://doi.org/10.1007/BF02715953
  3. Chen, J. Y., Ning, J. S., Zhang, C. Y., Luo, J.(2005), On the determination of lunar gravity field in the Chinese first lunar prospector mission, Chinese Journal of Geophysics, Vol. 48, No. 2, pp. 275-281
  4. Chin, G., Brylow, S., Foote, M., Garvin, J. et al. (2007), Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission, Space Science Reviews, Vol. 129, No. 4, pp.391-419 https://doi.org/10.1007/s11214-007-9153-y
  5. Dickey, J. O., Bender, P. L., et al. (1994), Lunar Laser Ranging: A Continuing Legacy of the Apollo Program, Science, Vol. 265, No. 5171, pp. 482-490 https://doi.org/10.1126/science.265.5171.482
  6. Floberghagen, R., Noomen, R., Visser, P.N.A.M. and Racca, G. D. (1996), Global Lunar Gravity Recovery From Satellite-to-Satellite Tracking, Planetary and Space Science, Vol. 44, No. 10, pp. 1081-1097 https://doi.org/10.1016/0032-0633(95)00152-2
  7. Konopliv, A. S., Binder, A. B., Hood, L. L., Kucinskas, A. B., Sjogren, W. L., Williams, J. G. (1998), Improved Gravity Field of the Moon from Lunar Prospector, Science, Vol. 281, No. 5382, pp.1476-1480 https://doi.org/10.1126/science.281.5382.1476
  8. Konopliv, A. S., Asmar, S. W., Carranza, E., Sjogren, W. L. and Yuan, D. N. (2001), Recent Gravity Models as a Result of the Lunar Prospector Mission, Icarus, Vol. 150, N0. 1, pp. 1-18 https://doi.org/10.1006/icar.2000.6573
  9. Lemoine, F. G. R., D. E. Smith, M. T. Zuber, G. A. Neumann, and D. D. Rowlands (1997), A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data, Journal of Geophysical Research, Vol. 102, No. E7, pp. 16,339-16,359 https://doi.org/10.1029/97JE01418
  10. Namiki, N., Iwata, T., Matsumoto, K., et al.(2009), Farside Gravity Field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya), Science, Vol. 323, No. 5916, pp. 900-905 https://doi.org/10.1126/science.1168029
  11. Muller, P. M., Sjogren, W. L. (1968), Mascons: Lunar Mass Concentrations, Science, Vol. 161, No. 3842, pp. 680-684 https://doi.org/10.1126/science.161.3842.680
  12. Rathsman, P., Kugelberg, J., Bodin, P., Racca, G. D., Foing B., Stagnaro, L. (2005), SMART-1: Development and lessons learnt, Acta Astronautica, Vol. 57, No. 2-8, pp.455-468 https://doi.org/10.1016/j.actaastro.2005.03.041
  13. Zuber, M. T. Smith, D. E., Alkalai, L., Lehman, D. H., Watkins, M. M. and GRAIL Team. (2008), Outstanding Questions on the Internal Structure and Thermal Evolution of the Moon and Future Prospects from the GRAIL Mission, Lunar and Planetary Science XXXIX, #1074
  14. LPI(2009), Lunar and Planetary Institute,http://www.lpi.usra.edu
  15. JAXA(2009), Japan Aerospace Exploration Agency,http://www.jaxa.jp