• Title/Summary/Keyword: Lunar Base

Search Result 22, Processing Time 0.028 seconds

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Mission Trajectory Design for Lunar Explorer using Variable Low Thrust (가변 저추력을 이용한 달탐사 임무궤도 설계)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Song, Young-Joo;Park, Sang-Yong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • Since the 1st space race between the United States and Soviet Union during the 1960s, we are competing 2nd space race to occupy the Lunar territory. Since the United States announced to construct the Lunar Base by the end of 2020, ED, Japan, and China launched Lunar explorers successfully. Even India is planning to launch a Lunar explorer in 2008. Korean government also announced that the Korea will launch first Lunar explorer in 2020. In this research Lunar mission trajectory design which will be fundamental data for Lunar mission with variable low thrust and Lunar mission trajectory which has a similar mission specification to SMART-1 are presented.

  • PDF

A Study on the Path Tracking Performance of Lunar Lander Demonstrator using a PWM-based Thrust Controller (펄스폭 변조기 기반 추력 제어기를 이용한 달 착륙선 지상시험모델의 경로 추종 성능 연구)

  • Yang, Sung-Wook;Son, Jong-Jun;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.75-80
    • /
    • 2014
  • A lunar lander demonstrator developed for the purpose of demonstrating lunar landing technologies recently in Korea. The thruster control system of the lunar lander demonstrator adopted the main thrusters for altitude control and the reaction thrusters for attitude control. In this paper, we propose a path tracking controller base on Euler angles. The control signals of the controller are of continuous type. And Pulse Width Modulator(PWM) is adopted to provide On/Off signals. We perform MATLAB simulation for evaluating the path tracking performance and the final landing velocity of the lunar lander demonstrator.

Introduction to Lunar Oxygen Distribution and Its Extraction Technology (달 표면 산소 분포 및 산소 추출 기술 소개)

  • Kim, Kyeong Ja
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • NASA has a plan for the Artemis manned lunar mission in 2020. In 2030s, not only America but also other countries are considering to prepare for human to stay on the Moon at least for a month and necessary technology is currently being developed. With this plan, the mostly considered thing is lunar in-situ resource utilization. The most essential resources could be water and oxygen for sustain human life on the Moon. These resources are not supposed to be brought from the Earth, and it is economically sensible if they are obtained from the lunar surface. Because oxygen can be used as both oxidizer and propellent when a rocket departs from a lunar base directly to Mars, technology for extraction method of oxygen resource and its utilization has been being developed worldwide. This paper introduces oxygen distribution on the Moon and major oxygen extraction methods.

A Study on the Use of the Lunar Principle of MULDAE as a Predictor of Tidal Phenomenon (물때의 실용화에 관한 연구)

  • 박청정
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.1
    • /
    • pp.41-81
    • /
    • 1985
  • Tidal phenomenon can be utilized by the wise and cautious mariner to safely perform his duties as pilot and navigator. It can be either a help or hindrance to the mariner. The principle of MULDAE which expresses the determination of the state of the tide based upon knowledge of the lunar date and it has been used in Korea since ancient times. The folk method of calculation was essentially based on an unsystematic division of the lunar month, traditionally using the numbers 7 or 8. As the lunar cycle is complete in 15 days the tidal cycle should also correspondence closely to the lunar date. This paper represents the first scientific attempt to systematically investigate this unique traditional method of tidal calculation and contains a comparison of the MULDAE and ordinary (solar based) tide calculation methods. MULDAE was compared with the standard tide table for standard and island ports in Korea from 1982 to 1985. This study concluded that MULDAE was indeed an accurate adn reliable predictor of tidal activity. Furthermore, the number 6 was found to be the correct divisor upon which to base MULDAE calculations Also a formula expressing MULDAE as a function was discovered. This research show that MULDAE can be applied nationwide and is a reliable and easy way to predict tides based upon mean figures for certain ports and island A calender showing MULDAE is presented here for the first time. A clear relationship between the MULDAE method of calculating tides and the use of ordinary tide tables is proven.

  • PDF

3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

  • Hong, Ik-Seon;Yi, Yu;Yu, Jaehyung;Haruyama, Junichi
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works (달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제)

  • Ryu, Geun U;Kim, Young-Jae;Shin, Hyu-Soung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.839-856
    • /
    • 2022
  • Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. However, transporting construction materials from Earth for lunar base construction is extremely expensive. Thus, technologies for manufacturing construction materials using in-situ resources from the moon should be advanced. The sintering techniques have been actively studied using lunar soil. In this review, five sintering technologies, including radiation, solar, spark plasma, laser, and microwave sintering, for manufacturing construction materials using lunar soil are introduced, and future research is discussed.