• Title/Summary/Keyword: Lumped Mass Method

Search Result 118, Processing Time 0.025 seconds

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun;Nam, Y.S.;Eun, Sung-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain (주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석)

  • Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

Natural vibration analysis of diagonal networks

  • Chai, W.S.;Li, Y.;Chan, H.C.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.517-527
    • /
    • 1998
  • This paper describes an exact method of analysis for natural vibration of diagonal networks by considering an equivalent cyclic periodic structure and adopting the double U-transformation technique. Both a lumped mass system and a distributed mass system are considered to investigate the diagonal networks. The exact solution for the frequency equations and the natural modes of the networks can be derived. As numerical examples, square diagonal cable networks with different meshes are worked out.

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.

A Sensitivity Coefficient Analysis by the Change of Dynamic Characteristics of the Structure (구조물의 동특성 변화에 따른 감도계수 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.682-686
    • /
    • 2002
  • This study predicts the sensitivity coefficient by the change of dynamic Characteristics of the Structure. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifying the mass and stiffness. The predicted the sensitivity coefficient are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model (집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정)

  • Kang, Gi-Ho;Shim, Song;Kim, Gwang-Jun
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

A Numerical Study on Heat Transfer in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 열전달에 관한 수치해석 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.377-385
    • /
    • 2005
  • An analytical model was developed using the lumped mass parameter method to estimate temperature distribution of metal parts and refrigerant of the hermetic reciprocating compressor, All of the lumped mass has been equated with the first law of thermodynamics. In the delivered equation, correlations of heat transfer coefficient in the heat transfer equation were taken from open literature. The equations are solved by Gauss-Jordan method simultaneously. To verify the developed numerical program, an experiment was conducted with a domestic refrigerator. The compressor which had been installed at the bottom of the experimental refrigerator was modified to measure internal temperature. Model verification test was conducted at $30^{\circ}C$ outdoor temperature with variation of compressor cooling conditions. As a result, there is a good consistency between calculated temperature and measured one.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.