• Title/Summary/Keyword: Luminescence spectra

Search Result 184, Processing Time 0.031 seconds

Preparation and Properties of the X-ray Storage Phosphors BaFBr1-xIx:Eu2+, Na+ (X-선 저장 BaFBr1-xIx:Eu2+, Na+ 형광체의 제조 및 특성)

  • Cheon, Jong-Kyu;Kim, Sung-Hwan;Kim, Chan-Jung;Kim, Wan;Kang, Hee-Dong;Kim, Do-Sung;Seo, Hyo-Jin;Doh, Sih-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The forming conditions of X-ray storage phosrhors $BaFBr_{1-x}I_x:Eu^{2+}$, $Na^+$ have been investigated, and measured the PSL emission spectra and its intensity, fading characteristics and does dependence of the prepared phosphors. These characteristics were compared with those of commercial image plate (ST-III) obtained from Fuji Photo Film Co. The optimal preparing conditions of $BaFBr_{1-x}I_x:Eu^{2+}$, $Na^+$ Phosphor were 0.5 mol% of $EuF_3$, 4.0 mol% of NaF and composition ratio x=0.3, and the sintering temperature were $950^{\circ}C$ in $H_2$ atmosphere. When the composition ratio x was equal to 0, the spectral range of the luminescence of $BaFBr_{1-x}I_x:Eu^{2+}$, $Na^+$ phosphor was $365{\sim}420\;nm$, and its maximum luminescence intensity appeared at 390 nm. When composition ratio x was not equal to 0, the wavelength ranges and peak of the spectra were shifted to the longer wavelength with the growth of composition ratio x. A good linearity was shown between the PSL intensity and X-ray irradiation dose. The phosphor sample with x=0.3 exhibited better fading characteristics than that of other $BaFBr_{1-x}I_x:Eu^{2+}$ phosphor samples, and the fading characteristics of the PSL intensity at room temperature were shown poorer with increasing $I^-$ ion concentration. The lattice constant of the phosphor becomes larger with increasing the $I^-$ ion concentration.

Luminescence properties of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ red phosphor as the effect of Zn ion (Zn ion의 영향에 따른 $(Y,\;Zn)_2O_3$:$Eu^{3+}$ 적색 형광체의 발광특성)

  • Song, Y.H.;Moon, J.W.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2008
  • To enhance the luminescence properties, the red phosphor composed of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ as doping concentration of Zn ion is synthesized at $1200^{\circ}C$ for 6 hrs in air atmosphere by conventional solid reaction method. As a result of the red phosphor $(Y,\;Zn)_2O_3$:$Eu^{3+}$ is measured X-ray diffraction (XRD), The main peak is nearly corresponded to the same as JCPDS card (No. 41-1105). When the doping concentration of Zn ion is more than 5 mol%, However, the ZnO peak is showed by XRD analysis. Therefore, when the doping concentration of Zn ion is less than 5 mol%, the Zn ion is well mixed in $Y_2O_3$ structure without the impurity phases. The photoluminescence (PL) properties is shown as this phosphor is excited in 254 nm region and the highest emission spectra of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ has shown in 612 nm region because of a typical energy transition ($^5D_0{\rightarrow}^7F_2$) of $Eu^{3+}$ ion. As the doping concentration of Zn ion is more than 10 mol%, the emission peak is suddenly decreased. when the highest emission peak as doping concentration of Zn ion is shown, the composition of this phosphor is $(Y_{0.95},\;Zn_{0.05})_2O_3$:$Eu^{3+}_{0.075}$ and the particle size analyzed by FE-SEM is confirmed from 0.4 to $3{\mu}m$.

Study on the Species Distributions of Dissolved U(VI) and Adsorbed U(VI) on Silica Surface (용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구)

  • Jung, Euo Chang;Kim, Tae-Hyeong;Jo, Yongheum;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik;Baik, Min Hoon;Yun, Jong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • Dissolved hexavalent uranium can exist in the form of several different chemical species. Furthermore, species distributions depend on the pH value of the aqueous solution. Representatively, UO22+, UO2OH+, (UO2)2(OH)22+, and (UO2)3(OH)5+ species coexist in solutions at acidic and circumneutral pH values. When amorphous silica particles are suspended in an aqueous solution, the dissolved chemical species are easily adsorbed onto silica surfaces. In this study, it was examined whether the species distribution of the adsorbed U(VI) on a silica surface followed that of the dissolved U(VI) in an aqueous solution. Time-resolved luminescence spectra of three different dissolved species (UO22+, UO2OH+, and (UO2)3(OH)5+) and two different adsorbed species (≡SiO2UO2, ≡SiO2(UO2)OH-, or ≡SiO2(UO2)3(OH)5-) were measured in the pH range 3.5-7.5. The spectral shapes of these chemical species were compared by changing the pH value; consequently, it was confirmed that the species distribution of the adsorbed U(VI) species was different from that of the dissolved U(VI) species.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

Electro-Optical Characteristics and Analysis of 1×1 mm2 Large-Area InGaN/GaN Green LED (1×1 mm2 대면적 녹색 LED의 전기 광학적 특성 분석)

  • Jang, L.W.;Jo, D.S.;Jeon, J.W.;Ahn, Tae-Young;Park, M.J.;Ahn, B.J.;Song, J.H.;Kwak, J.S.;Kim, Jin-Soo;Lee, I.H.;Ahn, H.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.288-293
    • /
    • 2011
  • We investigated the effects of piezoelectric field on the electro-absorption characteristics in InGaN/GaN multiple-quantum well (MQW) green light emitting diodes (LED). Double crystal X-ray diffraction measurement was performed to study the crystalline property and indium (In) composition in the MQW active layer. To measure the electro-luminescence and electro-reflectance (ER) spectroscopy, we fabricated the $1{\times}1\;mm^2$ large-area green LED chip. The piezoelectric field inside the LED structure was evaluated from the Vcomp in active layer by the ER spectra. Finally, we analyzed the electro-absorption characteristics of the green LED by using the photo-current spectroscopy.

Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs

  • Jin, Young-Eup;Kang, Jeung-Hee;Song, Su-Hee;Park, Sung-Heum;Moon, Ji-Hyun;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.139-147
    • /
    • 2008
  • New PPV derivatives which contain electron-withdrawing CF3F4phenyl group, poly[2-(2-ethylhexyloxy)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (CF3F4P-PPV), and poly[2-(4-(2-etylhexyloxy)-phenyl)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (P-CF3F4P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing CF3F4phenyl group to the phenyl backbone, the LUMO and HOMO energy levels of CF3F4P-PPV (3.14, 5.50 eV) and P-CF3F4P-PPV (3.07, 5.60 eV) were reduced. The PL emission spectra in solid thin film are more red-shifted over 50 nm and increased fwhm (full width at half maximum) than solution conditions by raising aggregation among polymer backbone due to electron withdrawing effect of 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group. The EL emission maxima of CF3F4P-PPV and P-CF3F4P-PPV appear at around 530-543 nm. The current density-voltage-luminescence (J-V-L) characteristics of ITO/PEDOT/polymer/Al devices of CF3F4P-PPV and P-CF3F4P-PPV show that turn-on voltages are around 12.5 and 7.0 V, and the maximum brightness are about 82 and 598 cd/m2, respectively. The maximum EL efficiency of P-CF3F4P-PPV (0.51 cd/A) was higher than that of CF3F4P-PPV (0.025 cd/A).

Synthesis and Properties of SrMoO4 Phosphors Doped with Various Rare Earth Ions for Anti-Counterfeiting Applications (위조 방지 분야에 응용 가능한 다양한 희토류 이온이 도핑된 SrMoO4 형광체의 제조 및 특성)

  • Moon, Tae-Ok;Jung, Jae-Yong;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.406-412
    • /
    • 2020
  • SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/26H15/2 magnetic dipole transition and 4F9/26H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anti-counterfeiting application.

Investigation of the influence of substrate surface on the ZnO nanostructures growth (기판 표면의 영향에 의한 ZnO 나노 구조 성장에 관한 연구)

  • Ha, Seon-Yeo;Jung, Mi-Na;Park, Seung-Hwan;Yang, Min;Kim, Hong-Seung;Lee, Uk-Hyeon;Yao, Takafumi;Jang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1022-1025
    • /
    • 2005
  • The effect of substrate surface to the formation of ZnO nanostructures has been investigated using Si (111), $Al_2O_3$(C-plane) $Al_2O_3$(A-plane), and $Al_2O_3$(R-plane) substrates. The growth temperature was controlled from 500$^{\circ}C$ ${\sim}$ 600$^{\circ}C$, and the luminescence properties were investigated by a series of photoluminescence (PL) measurements at the elevating temperatures. ZnO nanostructures grown on Si substrate show strong UV emission intensity along with green emission positioned at 3.22 eV and 2.5 eV, respectively. However, green emission was not observed from the ZnO nanostructures grown on $Al_2O_3$ substrates. It is explained in terms of the difference of the surface energy between Si and $Al_2O_3$. Also, the origin of UV emissions has been discussed by using the temperature-dependent PL. The distinction of the PL spectra is interpreted in terms of the difference of the impurity included in the nanostructures.

  • PDF

Photoluminescence and Concentration Quenching Properties of BaMoO4:Tb3+ Phosphors (BaMoO4:Tb3+ 형광체의 발광과 농도 소광 특성)

  • Cho, Shinho;Kim, Jindae;Hwang, Donghyun;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • $BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.