• 제목/요약/키워드: Lumbrical muscle

검색결과 6건 처리시간 0.021초

Correlations Between Maximal Isometric Strength and the Cross-Sectional Area of Lumbrical Muscles in the Hand

  • Jung, Doh-Heon;Lee, Won-Hwee;Kim, Su-Jung;Cynn, Heon-Seock
    • 한국전문물리치료학회지
    • /
    • 제18권4호
    • /
    • pp.34-42
    • /
    • 2011
  • The lumbrical muscles contribute to the intrinsic plus position, that is simultaneous metacarpophalangeal (MCP) flexion and interphalangeal (IP) extension. The strength of the lumbrical muscles is necessary for normal hand function. However, there is no objective and efficient method of strength measurement for the lumbrical muscles. In addition, previous studies have not investigated the measurement of the cross-sectional area (CSA) of the lumbrical muscles using ultrasonography (US) and the relationship between lumbrical muscle strength in the intrinsic plus position and the CSA. Therefore, the purpose of this study was to identify the measurement method of the CSA of the lumbrical muscles using US and to examine the relationship between maximal isometric strength and the CSA of lumbrical muscles. Nine healthy males participated in this study. Maximal isometric strength of the second, third, and fourth lumbrical muscles was assessed using a tensiometer in the intrinsic plus position which isolated MCP flexion and IP extension. The CSA of the lumbrical muscles was measured with an US. The US probe was applied on the palmar aspect of the metacarpal head with a transverse view of the hand in resting position. There was no significant difference between maximal isometric strength of the lumbrical muscles, but the fourth lumbrical muscle was stronger than the others. The CSA of the lumbrical muscles was significantly different and the fourth lumbrical muscle was significantly larger than the second lumbrical muscle. There was moderate to good correlation between maximal isometric strength and the CSA of the lumbrical muscles. Therefore, we conclude that maximal isometric strength of the lumbrical muscles was positively correlated to the CSA of the lumbrical muscle in each finger, while the measurement of the CSA of the lumbrical muscles, using US protocol in this study, was useful for measuring the CSA of the lumbrical muscles.

An accessory muscle of flexor digitorum profundus with bipennate first lumbrical: a unique variation of clinical significance

  • Rohini Motwani;Ariyanachi Kaliappan;Mrudula Chandrupatla
    • Anatomy and Cell Biology
    • /
    • 제56권1호
    • /
    • pp.150-154
    • /
    • 2023
  • During the deep dissection of the front of the forearm, an anomalous accessory muscle in relation to the flexor digitorum profundus (FDP) muscle was observed in the right forearm. The accessory muscle consisted of a spindle-shaped muscle belly with a long tendon underneath the flexor pollicis longus muscle. When followed distally, the accessory muscle tendon was found lateral to the FDP tendon for the index finger and entered the palm deep to the flexor retinaculum. In the palm, we encountered the first lumbrical muscle as a bipennate muscle taking origin from the adjacent sides of the middle of the tendons of FDP and accessory muscle tendon. After giving origin to first lumbrical muscle, the accessory muscle got merged with the tendon of FDP for index finger. Understanding this kind of variation is required for radiologists and hand surgeons for diagnostic purposes and while performing corrective surgical procedures.

흰쥐 수지동맥의 미세구조에 관한 연구 (Eine Structure of Digital Arteries in Rat)

  • 김백윤;신근남
    • Applied Microscopy
    • /
    • 제29권1호
    • /
    • pp.83-94
    • /
    • 1999
  • 미세혈관 수술의 발달로 수지동맥의 재접합술이 성행함에 따라 혈관벽의 구조에 관한 연구들이 활발하지만 수지의 미세동맥과 모세혈관에 관한 연구는 드물다. 이에 저자는 흰쥐 수지의 충양근 안에 있는 미세동맥과 모세혈관의 구조를 전자현미경으로 관찰하여 보고하고자 한다. 1. 흰쥐 충양근 내의 미세동맥 (small arterioles)은 그 직경이 $12\sim20{\mu}m$로 중막이 한 층의 평활근세포로 구성된 종말소동맥 (terminal arteriole) 형태였는데 인체의 종말소동맥$(30\sim35{\mu}m)$에 비해 직경이 작았으며, 모세혈관은 직경이 $5\sim8{\mu}m$로 비슷하였다. 2. 모든 미세동맥 및 모세혈관의 내막을 구성하는 내피세포는 연속형 (continuous type)이었고, 따라서 전체 세포질내에 포음소포(pinocytic vesicles)가 많이 관찰되었다. 3. 모세혈관 주위에서 자주 혈관주위세포(pericytes)가 관찰되었는데 철관주위세포의 긴 들기가 내피세포의 일부를 싸는 경우도 많았으며 이들은 기저판에 의해 둘러싸여 있었다. 4. 내피세포들 사이에는 여러 가지 형태의 접촉이 있었으나 특히 폐쇄띠 (tight junction)를 가장 많이 관찰할 수 있었다. 미세동맥의 내피하층은 기저판 아래에서 매우 불규칙한 양상으로 나타났는데 곳곳에 내피세포와 중막을 구성하는 평활근세포의 막이 꽉 붙어 관찰되었다. 5. 미세동맥의 중막을 구성하는 한 층의 평활근세포의 세포질은 많은 filaments가 있어 균질성으로 보이는 균질성 영역 (homogeneous area)과 mitochondria, 조면내형질망, 골지복합체, polyribosome 등이 관찰되는 핵 주위의 비균질성 영역 (non-homogeneous area)으로 구분되었다. 6. 미세동맥의 외막은 섬유모세포의 아주 가느다란 돌기들로 형성되어 있었으며 군데군데 교원섬유들이 관찰되었다.

  • PDF

Degenerated lumbricals in the feet of adult human cadavers: case series

  • Hare Krishna;Rati Tandon;Tony George Jacob
    • Anatomy and Cell Biology
    • /
    • 제56권2호
    • /
    • pp.288-292
    • /
    • 2023
  • In the foot, the lumbricals flex the metatarsophalangeal joints and extend the interphalangeal joints. The lumbricals are known to be affected in neuropathies. It is not known whether they may degenerate in normal individuals. Here, we report our findings of isolated degenerated lumbricals in seemingly normal feet of two cadavers. We explored lumbricals in 20 male and 8 female cadavers that were 60-80 years of age at the time of death. As part of routine dissection, we exposed the tendons of the flexor digitorum longus and the lumbricals. From the degenerated lumbricals, we took some tissue for paraffin-embedding, sectioning, and staining by hematoxylin and eosin, and Masson's trichrome technique. Of the 224 lumbricals studied, we found four apparently degenerated lumbricals in two male cadavers. In the first, the 2nd and 4th lumbricals in the left foot and the 2nd in the right foot were degenerated. In the second, the right 4th lumbrical was degenerated. Microscopically, the degenerated tissue was made of bundles of collagen. The lumbricals may have degenerated due to compression of their nerve supply. We cannot comment on whether the functionality of the feet were affected by these isolated degeneration of the lumbricals.

Anatomical Study on the Heart Meridian Muscle in Human

  • Park Kyoung-Sik
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.11-17
    • /
    • 2005
  • This study was carried out to identify the components of the human heart meridian muscle, the regional muscle group being divided into outer, middle, and inner layers. The inner parts of the body surface were opened widely to demonstrate muscles, nerves, blood vessels and to expose the inner structure of the heart meridian muscle in the order of layers. We obtained the following results; $\cdot$ The heart meridian muscle is composed of muscles, nerves and blood vessels. $\cdot$ In human anatomy, the difference between terms is present (that is, between nerves or blood vessels which control the meridian muscle and those which pass near by). $\cdot$ The inner composition of the heart meridian muscle in the human arm is as follows: 1) Muscle H-l: latissimus dorsi muscle tendon, teres major muscle, coracobrachialis muscle H-2: biceps brachialis muscle, triceps brachialis muscle, brachialis muscle H-3: pronator teres muscle and brachialis muscle H-4: palmar carpal ligament and flexor ulnaris tendon H-5: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficialis tendon, flexor digitorum profundus tendon H-6: palmar carpal ligament & flexor retinaculum, flexor carpi ulnaris tendon H-7: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficial is tendon, flexor digitorum profundus tendon H-8: palmar aponeurosis, 4th lumbrical muscle, dorsal & palmar interrosseous muscle H-9: dorsal fascia, radiad of extensor digiti minimi tendon & extensor digitorum tendon 2) Blood vessel H-1: axillary artery, posterior circumflex humeral artery H-2: basilic vein, brachial artery H-3: basilic vein, inferior ulnar collateral artery, brachial artery H-4: ulnar artery H-5: ulnar artery H-6: ulnar artery H-7: ulnar artery H-8: palmar digital artery H-9: dorsal digital vein, the dorsal branch of palmar digital artery 3) Nerve H-1: medial antebrachial cutaneous nerve, median n., ulnar n., radial n., musculocutaneous n., axillary nerve H-2: median nerve, ulnar n., medial antebrachial cutaneous n., the branch of muscular cutaneous nerve H-3: median nerve, medial antebrachial cutaneous nerve H-4: medial antebrachial cutaneous nerve, ulnar nerve H-5: ulnar nerve H-6: ulnar nerve H-7: ulnar nerve H-8: superficial branch of ulnar nerve H-9: dorsal digital branch of ulnar nerve.

  • PDF

수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察) (Anatomy of Large Intestine Meridian Muscle in human)

  • 심영;박경식;이준무
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF