• Title/Summary/Keyword: Lubricants oil

Search Result 459, Processing Time 0.019 seconds

Turbine oil에 있어서의 Tribology

  • 김주항
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 1989
  • Turbine oil이라고 하는 것은 각종 turbine에 쓰여지고 있는 윤활유를 총칭하는 것으로 turbine의 종류로부터 증기 turbine oil, 수력 turbine oil, gas turbine oil로, 그리고 용도에 따라서 육상 turbine oil. 선박 turbine oil, 윤활유의 특성에 따라 R & O turbine oil, EP turbine oil로 분류하고 있으며, tribology라고 하는 것은 간략하게 말하면 마찰, 마모, 윤활, 축수, 설계 등에 관한 제반문제들을 물리학, 화학, 역학 및 금속학 등의 관점으로부터 종합적으로 취급하는 기술이다.

The Influence of Engine Operating Conditions and Lubricants on Oil Film Thickness of Engine Connecting Rod Bearing (커넥팅로드 베어링의 유막두께에 미치는 기관 운전조건 및 윤활유의 영향)

  • Lee, D.H.;Chang, B.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.1-10
    • /
    • 1994
  • By applying of total electric capacitance method on engine connecting rod bearing during engine operating, the influence of engine operating conditions and lubricants on bearing oil film thickness was investigated. Minimum oil film thickness increases with kinematic viscosity, but as increasing of viscosity, the increasing ratio of film thickness is reduced. Also minimum oil film thickness increases with engine speed but there is a limit. Above this limit, film thickness decreases in opposition because of crankshaft inertia. As increasing of engine torque and oil temperature, munimum oil film thickness decreases linearly. For non-Newtonian oils, the correlation between $100{\circ}C$ kinematic viscosity and munimum oil film thickness is very poor.

  • PDF

A Study on the Fire Hazard of Transportation Oil (수송기관용 오일의 화재위험성에 관한 연구)

  • Park, Young Ju;Hwang, Me Jung;Lee, Hae Pyeong;Lee, Seung Chul;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.114-120
    • /
    • 2014
  • The purpose of this study is to conduct the study of the combustion and thermal characteristics through transportation oil for the analysis of fire hazard. Transportation oil breaks down into fuels such as diesel for civilian demands, gasoline, DF1(diesel for military), high sulfur diesel(for marine), kerosene and JP1(for aviation), and lubricants like brake fluid, power steering oil, engine oil, and automatic and manual transmission oil. The experiments of flash point, ignition point, flame duration time, heat release rate were carried out using TAG closed cup flash point tester(AFP761), Cleveland open cup auto flash point analyzer(AFP762), KRS-RG-9000 and Dual cone calorimeter. As a result, the fuel's ignition points were lower than lubricants, especially that of gasoline was not conducted as it has below zero one. Gasoline has the highest ignition point of about $600^{\circ}C$, while the other fuels showed $400{\sim}465^{\circ}C$. For flame duration time, lubricants had over 300 seconds, but fuels had less than 300 seconds except high sulfur diesel(350 seconds). Total heat release rate ranged $287{\sim}462kW/m^2$ for lubricants and gasoline showed the highest total heat release rate, $652kW/m^2$.

The Effect of Tribological Characteristics on Lubricants Properties(The 1st) (윤활유의 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.86-92
    • /
    • 1997
  • When Lubricants is used under severe running condition, tribological characteristics is very important. I have studied the lubricating oil viscosity, kinds of additives and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied while the oil viscosity was unchanged. It was shown from the test results that wear is not greatly affected by the amount of ZnDTP antiwear agent, but E-P additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its tempea-ature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the lower the scratch of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

  • PDF

Possibility of Obtaining Lubricant Base Oil from Talakan Crude Oil Suitable for Exploitation in Extremely Cold Conditions in the Republic of Sakha (Yakutia)

  • Zhirkov, N.P.;Zakharova, S.S.;Sung, Zoo-One
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • This paper addresses the problems of using anti-freeze lubricants for different machines that must function at extremely low temperatures during winter operation in the Republic of Sakha (Yakutia). We discuss the possibility of obtaining anti-freeze base oils from Talakan crude oil, an area with major oil and gas deposits of the Republic of Sakha, and also provide the trade and technological classification of Talakan crude oil. We propose two different schemes for processing Talakan crude oil: the fuel scheme (obtaining light and heavy fractions as a fuel oil) and the base oil scheme (obtaining light fractions and base oils). We investigate the influence of pour point depressants on alkyl-methacrylate base on the low-temperature properties of the fractions obtained from Talakan crude oil and Korean base oils, and establish the optimal concentration of pour point depressants. We compare the properties of these fractions with the low-temperature properties of Korean base oils and find that the commercial oil "Ravenol 0W-40" provides optimistic results. We obtain oil with a pour point of minus $50^{\circ}C$ and a viscosity index greater than 100. The Design of Experiment was used to establish the optimum composition of the pour point depressants and the base oil S-8 to obtain lubricant oil with a kinematic viscosity of 17 cSt, viscosity index of 208, and a pour point of minus $64^{\circ}C$.