• Title/Summary/Keyword: Lubricant Thickness

Search Result 100, Processing Time 0.019 seconds

The Changes of Transfer film and friction Characteristics with the Relative Amounts of Raw Materials (자동차용 마찰재에서 각 원료의 상대량에 따른 전이막 형성 및 마찰특성의 변화)

  • Cho, Min-Hyung;Lee, Jae-Young;Kim, Dae-Hwan;Cheong, Geun-Joong;Choi, Chun-Rak;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.271-280
    • /
    • 2001
  • An NAO friction material (low-steel type) containing 15 ingredients was investigated to study the role of transfer film on the friction characteristics. The friction material specimens with extra 100% of each ingredient were tested using a pad-on-disk type tribotester. A non-destructive method of measuring the transfer film was developed by considering the electric resistance of the transfer film. Results showed that solid lubricants and iron powder assisted transfer film formation on the rotor surface. Average friction coefficient was independent of transfer film thickness in this experiment. On the other hand, the thick transfer film on the rotor surface reduced the amplitude of friction oscillation under temperature conditions ( 250$^{\circ}C$) that transfer film forms.

  • PDF

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

EHL Analysis of Ball Bearing for Rough Surface With the FlowFactor (FlowFactor를 이용한 볼베어링의 탄성유체윤활해석)

  • Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.326-331
    • /
    • 2011
  • The purpose of this paper is to analyze and discuss the effects of surface roughness by comparing the elastohydrodynamic lubrication(EHL) analysis of smooth surface and rough surface as the ball bearing. In order to do this, The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds equation and the related flow factor which describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure relations equations, the elastic deformation equation, and the force balance equation are solved simultaneously. The results show that effects of surface roughness on the film thickness and pressre distribution should be considered especially in EHL contact problems.

Anti-Corrosion Performance and Applications of PosMAC® Steel

  • Sohn, Il-Ryoung;Kim, Tae-Chul;Ju, Gwang-Il;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths (진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석)

  • H.W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.

An Experimental study on the Characteristics of the Emulsion Lubrication (이멀션윤활특성에 관한 실험적 연구)

  • 이종순;이봉구;정재련;지창헌
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.12-19
    • /
    • 1986
  • Using emulsion lubricant whose cooling effect and incombustibility are good and which is economical, I investigated lubricative mechanism and the behavior of scattered particles in the elastic fluid lubrication region with the line contact between rollers and plates and the light interference system. The results of the study are as follows: (1) The flow in the squeeze oil film is considered as comparatively wide clearance and narrow one, and in the former case the effect of the distribution of particles and the velocity on the flow. In the latter case, emulsion particles stay in the clearance an the oil film changes with the decrease of the oil film thickness. (2) In the wide clearance the velocity difference of the flow O/W or W/O emulsion is inverse proportional to the particle size. In the narrow clearance the distribution of the remained drops is different from one another and the scattered particles change more easily in O/W type than in W/O type. (3) At the beginning of the EHL the stagnation region with slow flowing velocity exists and the behavior at the region is different depending on the particle size. (4) By observing the dischromatic light interference line, emulsion oil passing through EHL region and the crack behavior at the beginning of EHL were found.

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Fracture Toughness and Slinding Wear Properties of ABOw/AC4CH by Binder Additives (ABOw/AC4CH의 바인더 종류에 따른 파괴인성 및 미끄럼마모 특성)

  • Park, Won-Jo;Jung, Jae-Wook;Choi, Yong-Bum;Lee, Kwung-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.373-378
    • /
    • 2002
  • Metal matrix composites have a great interest in recent years because high specific strength, high specific stiffness characteristics, and application ranges of the composites are extend to variety industry. In this paper, an investigation was performed on the plane strain fracture toughness and slinding wear properties of AC4CH alloy(Al-Si-Mg line) reinforced with 20wt% aluminum borate whisker expect one, which contained a inorganic binder($TiO_2$). the binder led to the formation of strengthen the whisker each other. The test of fracture toughness was using CT(half size) specimen of thickness 12.5mm, width 25mm. and test of slinding wear of using tribo a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature. As results, Fracture toughness $K_{IC}$ is $8.7MPa-m^{05}$ for ABOw/AC4CH, $9.28MPa-m^{05}$ for ABOw/AC4CH added $TiO_2$. but AC4CH alloy was violated the critical stipulated by ASTM standard for valid measurement of $K_{IC}$. In case of, it was performed $J_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820.

  • PDF

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.