• Title/Summary/Keyword: Lowland river

Search Result 41, Processing Time 0.029 seconds

An Analysis about Inundation and Carrying Capacity of Drain Pipes in Urban Area (도시유역의 우수관거 통수능 및 침수특성 분석)

  • Lee, Jung-Ho;Jo, Duk-Jun;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • The localized rainfall happens frequently in urban areas recently and then, he drain pipes of urban areas do not drain well when the localized rainfalls happen. Specially, the inundation by the backwater on the lowland should be solved certainly in urban planning and sewer rehabilitation. In this study, it was examined whether the carrying capacities of the drain pipe are satisfied about a current design standard of the rainfall considering the outflows of the urban areas by the rainfall analysis. Also, the backwater in the drain pipe and the inundation on the lowland were analyzed considering the water level of the discharged river and the propriety of the design standard was examined by the analysis about the rainfall frequency. Also, the results offered the basic data to decide whether the detention reservoir should be established and the scale of the pump station.

  • PDF

Multi regression analysis of water quality characteristics in lowland paddy fields

  • Kato, Tasuku
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.36-36
    • /
    • 2012
  • Drainage water in lowland paddy fields is quantitatively influenced recycle and/or repeated irrigation by irrigation facilities, i.e. pumps, check gates, small reservoirs and so on. In those drainage channels, nutrients accumulation and increasing organic matters are considered to be occurred, and water quality would be degraded not only environmental aspect but irrigation purpose. In general, Total Nitrogen (T-N) is interested water quality index in irrigation water, because high nitrogen concentration sometimes caused decreasing rice production by excess growth and fallen or degrading quality of taste, then, farmers would like to clear water less than 1mg/L of T-N concentration. In drainage channel, it is known that the nitrogen concentration change is influenced by physical, chemical and biological properties, i.e, stream or river bed condition, water temperature, other water quality index, and plant cover condition. In this study, discharge data (velocity and level) in a drainage channel was monitored by an Acoustic Doppler system and water quality was sampled at same time in 2011. So those data was analyzed by multi regression model to realize hydrological and environmental factors to influence with nitrogen concentration. The results showed the difference tendency between irrigation and non-irrigation period, and those influenced factors would be considered in water quality model developing in future.

  • PDF

Application of Uncertainty Method fer Analyzing Flood Inundation in a River (하천 홍수범람모의를 위한 불확실도 해석기법의 적용)

  • Kim, Jong-Hae;Han, Kun-Yeun;Seo, Kyu-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.661-671
    • /
    • 2003
  • The reliability model is developed for analyzing parameter uncertainty and estimating of flood inundation characteristics in a protected lowland. The approach is based on the concept of levee safety factor and the statistical analysis of model parameters affecting the variability of flood levels. Monte Carlo simulation is incorporated into the varied flow and unsteady flow analysis to quantify the impact of parameter uncertainty on the variability of flood levels. The model is applied to a main stem of the Nakdong River from Hyunpoong to Juckpogyo station. Simulation results show that the characteristics of channel overflow and return now are well simulated and the mass conservation was satisfied. The inundation depth and area are estimated by taking into consideration of the uncertainty of width and duration time of levee failure.

Restoration of Iksan Imperial Capital City Structure and Construction Model in Late Baekje from the Point of Ancient Capital City Planning (백제 후기 익산도성 조영계획모델에 대한 도성계획사적 해석)

  • Lee, Kyung-Chan
    • Journal of architectural history
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2015
  • This study aims to draw out planning principles and structure of Iksan imperial capital city in late Baekje, especially in view of the relationship among imperial capital city planning area, skeletal axis and the location of royal castle. With site survey and analysis of historical records, old maps, topographical maps, archeological excavation data, land registration map of 1915, some significant inferences were drawn out. Firstly from the point of topological conditions, the contiguous line of a stratum from Mireuk mountain(彌勒山) to Wangkung-ri castle(王宮里遺蹟) and two waterways made a topological axis of Iksan Imperial capital city. Secondly district of Iksan imperial capital city can be deduced to the inner area north to Kummado soil wall(金馬都土城), south to the confluence of Iksan river(益山川) and Busang river(扶桑川), west to Okum mountain fortress(五金山城) and Galjeon river(葛田川), east to line near to eastern wall of Jesuksa temple(帝釋寺). Iksan ssang-reung(益山雙陵) was located outside western boundary line of capital city. Thirdly axis from Wangkung-ri castle to northern Kummado soil wall made a skeletal axis of city structure. It got through northern lowland along Buk river(北川) between Yonghwa(龍華山) and Mireuk mountain. Fourthly the location of royal palace can be deduced to the north part of the city around Kumma town area along the planning principle of northern royal palace.

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.

Population Size Estimation of the Kaloula borealis in the Daemyung Retarding Basin (대명유수지에 서식하는 맹꽁이 Kaloula borealis 개체군 크기 추정)

  • Choi, Seo-Young;Rho, Paikho
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.684-693
    • /
    • 2016
  • Daemyung retarding basin located near the confluence floodplain of the Nakdong and Kumho River is a large spawning site for the endangered Kaloula borealis, and needs for protecting the habitat of the endangered species are increasing. However, scientific studies are rarely conducted on the population characteristics and ecological knowledge on the species in the basin. This paper aims to estimate the population size and spatial distribution of the species that inhabited at the Daemyung retarding basin, using the capture-recapture method. Also, pitfall traps were installed in each habitat types classified with micro-topographic features, slope aspects, and vegetation communities to identify the spatial distribution characteristics of the Kaloula borealis of each habitat in the retarding basin. Field survey on the species was conducted from May 2013 to October 2014, showing that the species emerged in May, became more active during July and August and started to hibernate at the end of October. Using capture-recapture method, the first survey was carried out from July to August, 2014. Ninety-eight toads were captured, marked, and released back into the site. In the second survey, 68 toads including 5 marked toads of the previous survey were captured. Based on these two-sample surveys, around 535-2,131 individual toads are estimated to inhabit the Daemyung retarding basin. Fifty-seven pitfall traps were installed in four habitat types: mounded and vegetated flatland, lowland swamps, and slope areas of both the southern and western parts of the basin in order to delineate spatial abundance of the endangered Kaloula borealis during the rainy season when the species is actively spawning. Pitfall traps at the spatially explicit array indicated that the species gradually move to the slope areas near the Daemyung stream, showing high occurrence density of the Kaloula borealis compared to the lowland swamps after the spawning season. The emergence of Kaloula borealis in the lowland swamps appeared to be comparatively higher during the spawning season. However, after the spawning season the toads species rapidly moved into the neighboring land of relatively high elevation such as the slope area towards the Dalsung protected wetlands and Daemyung River. These results are closely related to the migration patterns that toads tend to return to the sheltering sites and/or hibernating grounds after the spawning season. Also, the Kaloula borealis moved to the nearest high-level vegetated areas as the lowland swamps of their spawning grounds deteriorated with the expansion of permanent ponds due to the rise in the groundwater level.

Analysis of Breach Mitigation Effect on Levee made with New Substance by Overtopping (신소재 활용 제방의 월류 붕괴 경감 효과 분석)

  • Ko, Dong-Woo;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Levee breaches can result from flooding due to torrential rainfalls, which are linked with recent abnormal climates and the aging of river levees. Breaches have caused enormous property damage and human casualties in lowland areas. Overtopping was found to be the cause for approximately 40% of all cases of breach. In this study, the reasons and mechanisms behind levee breaches were analyzed using hydraulic model testing. The overtopping stability and time delay effect of breaches were assessed for levees made with a new environmentally friendly substance. Image analysis revealed that the total breach time of the levees made with the new substance was about 2.25 times greater than that of an earthen levee. The initial breach rate of a general earthen levee was about 1.43 times higher than that of levees covered with the new substance, and the body collapsed rapidly. The breach mechanisms of levees covered with the new substance were completely different, and it is possible to prevent rapid breaches by mitigation of the breach speed on the slope by resisting overtopping.

Changes of Physical Structure of Hangang(Riv.) in Seoul City Area (서울시 구간 한강의 물리적 구조 변화에 관한 연구)

  • Hong, Sukhwan;Yeum, Junghun;Han, Bongho
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • This study aims to set up the basic data to manage the waterfowl habitat through the analysis of the changes of physical structure according to the time series of Hangang(Riv.) as water birds' habitat. Study area was 41.5km in length from Paldang bridge to Hangju bridge. during total length of 497.52km and horizontal boundary was based on the protected lowland in year 1975. As the analysis result of land use from the center of water to adjacent road to the river, ratio of year 1975 was in order of sedimentary land(22.7%), surface water(20.7%), built-up area(16.9%), field(16.2%), paddy field(15.9%), and afterwards most of the areas were changed through the construction of arterial highway and submerged weir in order to use Hangang(Riv.). In year 1985, the area ratio of protected lowland(57.8%) and surface water(32.8%) dramatically increased. After construction of river bank the recreational areas continually increased and relatively natural areas decreased. In year 2005, the area ratio of protected lowland was enlarged to 57.6% and surface water also to 33.3%. While the length of both riversides and naturalness decreased by 10.9%, 91.5% respectively in year 2005 compared to year 1975, the depth of water increased by 1.46m. Comprehensively, the flow of changes by physical structure in Hangang(Riv.) for 30 years was divided into two periods. The main characteristics in the first period were decrease of riverside area and enlargement of the surface water through the massive construction before middle of year 1980, and afterwards revetments were intensively artificialized with changes of land use for amusement area. In terms of water fowl habitat, Hangang(Riv.) which previously had various types of habitat condition was changed into simplified habitat for few of species, and the active improvement apporach was needed for habitat diversity.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.597-603
    • /
    • 2006
  • The purpose of this study is to improve the short term rainfall forecast skill using neural network model that can deal with the non-linear behavior between satellite data and ground observation, and minimize the flood damage. To overcome the geographical limitation of Korean peninsula and get the long forecast lead time of 3 to 6 hour, the developed rainfall forecast model took satellite imageries and wide range AWS data. The architecture of neural network model is a multi-layer neural network which consists of one input layer, one hidden layer, and one output layer. Neural network is trained using a momentum back propagation algorithm. Flood was estimated using rainfall forecasts. We developed a dynamic flood inundation model which is associated with 1-dimensional flood routing model. Therefore the model can forecast flood aspect in a protected lowland by levee failure of river. In the case of multiple levee breaks at main stream and tributaries, the developed flood inundation model can estimate flood level in a river and inundation level and area in a protected lowland simultaneously.