• Title/Summary/Keyword: Lower order Harmonics

Search Result 44, Processing Time 0.029 seconds

Elimination of Low Order Harmonics in Multilevel Inverters Using Genetic Algorithm

  • Salehi, Reza;Farokhnia, Naeem;Abedi, Mehrdad;Fathi, Seyed Hamid
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • The selective harmonic elimination pulse width modulation (SHEPWM) switching strategy has been applied to multilevel inverters to remove low harmonics. Naturally, the related equations do not have feasible solutions for some operating points associated with the modulation index (M). However, with these infeasible points, minimizing instead of eliminating harmonics is performed. Thus, harmful harmonics such as the $5^{th}$ harmonic still remains in the output waveform. Therefore, it is proposed in this paper to ignore solving the equation associated with the highest order harmonics. A reduction in the eliminated harmonics results in an increase in the degrees of freedom. As a result, the lower order harmonics are eliminated in more operating points. A 9-level inverter is chosen as a case study. The genetic algorithm (GA) for optimization purposes is used. Simulation results verify the proposed method.

A Study on the PWM Pattern for Harmonics Reduction in GTO Inverter (GTO 인버터의 고조파 저감을 위한 PWM 패턴에 관한 연구)

  • Cha, Min;Park, Young-Jeen;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1978-1981
    • /
    • 1997
  • This paper describes several PWM method for harmonics reduction in GTO inverter. The analysis and simulations of PWM techniques are carried out. The simulation results demonstrate that the programmed PWM methods(SHE PWM) are superior to the sine-modulated PWM method. The selected harmonic elimination (SHE) PWM scheme which eliminates specific lower order harmonics can generate high quality output waveform in PWM inverter.

  • PDF

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

Estimation of Harmonics on Power System of AC Electric Railway (교류 전기철도 전력계통의 고조파 예측량 계산)

  • 송진호;황유모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • We estimated harmonics on power system of AC railway based on quantitatively measured harmonics and investigated the need of facilities for harmonics reduction. In order to analysis harmonics which inflow into power system due to increase in collector voltages and harmonic currents generated from the train when the railway is in operation, the railway system Is sectioned into power supply, railway line, AT, sectioning Post and subsectioning post. For analysis of extension of currents resulting from the railway loads, PWM converter, VVVF inverter and the feeder system are modeled based on the dynamic node technique(DNT). In order to test the usefulness of the DNT for analysis of harmonic effects, the measured harmonic currents and harmonic magnification ratios at the S/K substation are compared with simulation results using DNT modelling, which include the results for two cases with and without filters for suppression of harmonic currents. When 8 cars(4M4T) are in operation, the total sum of harmonic currents resulting from the train at M and T phases, which inflow into the substation along with the railway line, is calculated. Using the harmonics analysis program for railway feeder system with these data, the total harmonic distortion factor(710) at the outgoing point of KEPCO substation is computed. The calculation shows that when the maximum THD at the receiving point of H/K substation was 0.0443% which is much lower than 1.5% which is the allowable value of KEPCO at 154kV as well as IEEE-519 above 132kV This result indicates that any measure for harmonics reduction in Incheon International Airport Railway is not needed.

A Study on the Characteristic of Capacitor Current by Voltage Harmonics (전압 고조파에 의한 커패시터 전류 특성 해석)

  • Kim, Jong-Gyeum;Kim, Sung-Hyun;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • As the increasing of non-linear load, we have a growing interest in power quality. Power quality has come to the voltage quality. Voltage harmonics consist in at the PCC by the non-linear load. Capacitor is generally used for the power compensation and as the passive filter by the serial connection with reactor. Capacitor has low impedance as the frequency increases, so easily fall down by the harmonic component of non-linear load. Small voltage of low-order acts on quite a few at the capacitor by the current increase. In this paper, we measured the magnitude and angle of voltage at the PCC and calculated under the same condition. we checked out that lower voltage of higher order produces current magnification.

Very High Linearity of High Power Amplifier by Reduction of $2^{nd}$, $3^{rd}$ Harmonics and Predistortion of $3^{rd}$ IMD (3차 혼변조 신호의 전치왜곡과 2, 3차 고조파 억제를 통한 고선형성 고출력 전력 증폭기에 관한 연구)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.50-54
    • /
    • 2011
  • In this article, the linearity of single power amplifier is improved by suppress $2^{nd}$ and $3^{rd}$ harmonics at output port of high power amplifier and by cancelling of $3^{rd}$ IMD. The matching network in order to suppress harmonics consists of metamaterial like the CRLH. The $2^{nd}$ and $3^{rd}$ harmonics are suppressed over 27 dBc, respectively. A phase of generated $3^{rd}$ IMD at output of DPA (drive power amplifier) has changed in order to offset the $3^{rd}$ IMD of HPA (high power amplifier). The harmonics of the proposed PAM suppress over 6 dB than single HPA. The PAM has a 36.98 dBm of the output power, 21.6 dB of the power gain and 29.4 % of the PAE. The harmonics is a -53 dBc about PAM. This result indicate that a harmonic level is lower 20 dB than reference power amplifier.

A New Harmonics Reducing Type High Factor Single-Phase Rectifier Circuit (새로운 고조파 저감형 고역율 단상정류 회로)

  • Kim, Chil-Yong;Mun, Sang-Pil;Cho, Man-Chul;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.468-472
    • /
    • 2007
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and expermental implementations

  • PDF

Design of the Circuit for a Power Factor Correction using the Two-Input Current Resonant (2분할 전류유입 공진 회로를 이용한 PFC회로의 설계)

  • Jang, W.S.;Koh, K.H.;Seo, K.Y.;Lee, H.W.;Kwak, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.233-235
    • /
    • 2001
  • On the active filter converter for power factor correction is used inverter for a air-conditioner's power supply to meet IEC standard In the active filter topology for power factor correction, extra switch only control the input current indirectly to satisfied with the IEC standard for reducing the cost and size. In this paper, by dividing the input current into two different modes, the current conduction period can be widened and harmonics can largely be canceled between the two modes. Hence, the harmonics characteristics can be significantly improved, whereby the lower order harmonics, such as the fifth and seventh orders, are much reduced. The results are confirmed by theoretical and experimental implementations.

  • PDF

A Study on the SHE-Based Harmonic Reduction of DC Power Regenerating Systems (SHE방식을 적용한 직류전력 회생시스템의 고조파 저감에 관한 연구)

  • 정우창;강경우;서영민;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • This paper proposes a novel control scheme for the harmonic reduction of DC power regenerating systems, which can regenerate the excessive DC power from DC bus line to AC supply in subway systems. In the developed regenerating systems controlled by MAC(Modified a-Conduction) method, the order of remaining harmonics are 12k$\pm$1. In SHE(Selected Harmonic Elimination) method proposed in this paper, however, the l1th and 13th harmonics are additionally eliminated. And moreover 23rd harmonics, lowest order harmonics among the remaining harmonics, is eliminated by 23rd AC filter furnished at the output terminals of regenerating systems. To verify the validity of the proposed SHE-based harmonic reduction technique, computer simulations are carried out. Simulation results show that the THDs of output voltages are lower than that of the MAC method and the THDs in the control range are in the range of 0.53-0.68 percents.

The Phenomena Giving Rise of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전시 비선형 부하에 나타나는 현상)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.285-291
    • /
    • 2002
  • In general, utility voltage is maintained at a relatively low level of Phase unbalance since a low level of unbalance can cause a significant power supply ripple and heating effects on the power system equipment. Voltage unbalance more commonly emerges in individual customer loads due to phase load unbalanced, especially where single phase power loads are used. Under unbalanced input voltages large lower order harmonics appears at the input and output ports of Power conversion devices. As the application of adjustable -speed drives (ASDs) and their integration with complex industrial processes increase, so does the need to understand how ASDs perform during voltage This paper describes a real load test to investigate the performance of 3-HP adjustable speed drives by an unbalanced voltage at the low-voltage system.