• Title/Summary/Keyword: Lower flash point

Search Result 105, Processing Time 0.032 seconds

Measurement and Prediction of the Combustible Properties of Cumene (큐멘(Cumene)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.465-469
    • /
    • 2016
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of cumene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of cumene was experimented. And, the lower explosion limit of cumene was calculated by using the lower flash point obtained in the experiment. The flash points of cumene by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of cumene by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$ and $45^{\circ}C$. The AIT of cumene by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

Measurement and Prediction of the Combustible Properties of Propionic Anhydride (Propionic Anhydride의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • For the safe handling of Propionic Anhydride being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of Propionic Anhydride was experimented. And, the lower explosion limit of propionic anhydride was calculated by using the lower flash point obtained in the experiment. The flash points of propionic anhydride by using the Setaflash and Pensky-Martens closed-cup testers measured $60^{\circ}C$ and $61^{\circ}C$, respectively. The flash points of propionic anhydride by using the Tag and Cleveland open cup testers are measured $67^{\circ}C$ and $73^{\circ}C$. The AIT of propionic anhydride by ASTM 659E tester was measured as $280^{\circ}C$. The lower explosion limit by the measured flash point $60^{\circ}C$ was calculated as 1.37 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc) (디메틸아세트아미드(DMAc)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.553-556
    • /
    • 2015
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of dimethylacetamide (DMAc) being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of DMAc was experimented. And, the lower explosion limit of DMAc was calculated by using the lower flash point obtained in the experiment. The flash points of DMAc by using the Setaflash and Pensky-Martens closed-cup testers measured $61^{\circ}C$ and $65^{\circ}C$, respectively. The flash points of DMAc by using the Tag and Cleveland automatic open cup testers are measured $68^{\circ}C$ and $71^{\circ}C$. The AIT of DMAc by ASTM 659E tester was measured as $347^{\circ}C$. The lower explosion limit by the measured flash point $61^{\circ}C$ was calculated as 1.52 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Prediction of the Fire and Explosion Properties of Isoamyl alcohol (이소아밀알코올의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dongmyeong
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.34-40
    • /
    • 2016
  • For the safe handling of isoamyl alcohol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of isoamyl alcohol was experimented. And, the lower explosion limit of isoamyl alcohol was calculated by using the lower flash point obtained in the experiment. The flash points of isoamyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of isoamyl alcohol by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$and $45^{\circ}C$. The AIT of isoamyl alcohol by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Prediction of Minimum Flash Point Behaviour for Flammable Binarry Solution Using Pensky-Martens Closed Cup Tester

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.6-10
    • /
    • 2010
  • The flash point of liquid solution is one of the most important flammability properties that used in hazard and risk assessments. Minimum flash point behaviour (MFPB) is showed when the flash point of a liquid mixture is below the flash points of the individual components. In this paper, the lower flash points for the flammable binary system, n-decane+n-octanol, were measured by Pensky-Martens closed cup tester. This binary mixture exhibited MFPB. The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and UNIQUAC equations. The optimization method were found to be better than those based on the Raoult's law, and successfully estimated MFPB. The opimization method based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC.

Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate (초산부틸의 화재 및 폭발 특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.25-31
    • /
    • 2017
  • The flash point, explosion limits, autoignition temperature(AIT) are important combustible properties which need special concern in the chemical safety process that handle hazardous substances. For the evaluation of the flammable properties of n-butylacetate, this study was investigated the explosion limits of n-butylacetate in the reference data. The flash points, fire points and AIT by the ignition delay time of n-butylacetate were experimented. The lower flash points of n-butylacetate by using the Setaflash and Pensky-Martens closed-cup testers were $24^{\circ}C$ and $26^{\circ}C$, respectively. The flash points of n-butylacetate using the Tag and Cleveland open cup testers are measured $31^{\circ}C$ and $40^{\circ}C$, respectively. And the fire points of n-butylacetate by the Tag and Cleveland open cup testers were measured $32^{\circ}C$ and $41^{\circ}C$. The AIT of n-butylacetate measured by the ASTM 659E tester was measured as $411^{\circ}C$. The lower explosion limit of lower flash point $24^{\circ}C$, which was measured by the Setaflash tester, was calculated to be 1.40 vol%. Also, the upper explosion limit of upper flash point $67^{\circ}C$ the Setaflash tester was calculated to be 12.5 vol%.

Flash Point of p-xylene and Epoxy Resins Mixtures (파라크실렌과 에폭시수지 혼합물의 인화점에 관한 연구)

  • 윤희승;강민호;하동명;정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.78-82
    • /
    • 2000
  • The flash point is an important property and hazardous index of a flammable liquid. The flash points are used by virtually all the environmental, health, and safety organizations in both government and industry to classify flammable liquids for safety and transportation regulations. The basics of all flash points behavior are concerned with the vapor pressure and explosive limits. The flash points of pure components and the mixture of solvents can be calculated with the use of the laws of Raoult, Dalton and Le Chatelier. In this paper, experimentally determined lower flash points of a p-xylene and epoxy resin system were compared with the calculated values by using Raoults law. Calculated lower flash points were in reasonable agreement with the observed values.

  • PDF

Estimation of the Flash Points for n-Propanol+Formic acid System Using the Binary Parameters Optimization Method (이성분계 파라미터 최적화 기법을 활용한 n-Propanol+Formic acid 계의 인화점 추산)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.65-69
    • /
    • 2008
  • An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the n-propanol+formic acid system were measured by Pensky-Martens closed cup apparatus. This binary mixture exhibited MFPB (minimum flash point behavior), which leads to the minimum on the flash point vs composition curve. The Raoult's law and optimization method using Wilson equation were used to predict the lower flash points and were compared with experimental data. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.