• Title/Summary/Keyword: Lower Structure

Search Result 4,946, Processing Time 0.032 seconds

A Study on the Luminance and Luminous Efficiency Improvement of AC PDP by an Improved Fence Structure Electrode (개량된 Fence전극 구조에 의한 AC PDP의 휘도 및 효율 개선에 관한 연구)

  • Hur, Min-Nyung;Lee, Sung-Hyun;Yu, Chung-Hui;Shin, Jung-Hong;Park, Jung-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.531-535
    • /
    • 2002
  • Nowadays, the most serious problems in ac PDP are high cost and complex manufacturing processes. To solve these problems, fence electrode structure, which eliminates the need for expensive transparent electrodes, has been newly suggested. But it has a lower luminance and luminous efficiency than the conventional stripe type electrode structure. In this study, an improved fence electrode structure has been suggested in order to improve luminance and luminous efficiency. The experimental results show that the luminous efficiency of suggested structure is 25% higher than that of conventional fence electrodes.

The Effects of Hydrogenation in n-channel Poly-si TFT with LDD Structure (LDD구조를 갖는 n-채널 다결정 실리론 TFT소자에서 수소처리의 영향)

  • 장원수;조상운;정연식;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1105-1108
    • /
    • 2003
  • In this paper, we have fabricated the hydrogenated n-channel polysilicon thin film transistor (TFT) with LDD structure and have analyzed the hot carrier degradation characteristics by electrical stress. We have compared the threshold voltage (Vth), sub-threshold slope (S), and trans-conductance (Gm) for devices with LDD (Lightly Doped Drain) structure and non-LDD at same active sizes. We have analyzed the hot carrier effects by the hydrogenation in devices. As a analyzed results, the threshold voltage, sub-threshold slope for n-channel poly-si TFT were increased, trans-conductance was decreased. The effects of hydrogenation in n-channel poly-si TFT with LDD structure were shown the lower variations of characteristics than devices of the non-LDD structure with nomal process.

  • PDF

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

In-situ Structure Modification of W powder Skeleton and related Cu Infiltration Kinetics in W-Cu (W-Cu 계에서 W 분말골격의 in-situ 구조 변화와 Cu의 용침 kinetics)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.36-41
    • /
    • 1999
  • The present work has attempted to investigate the dependence of Cu infiltration kinetics on in-situ structure modification of W powder skeleton in W-Cu system. In-situ structure modification of W skeleton by addition of 0.3wt%Ni-P eutectic alloy was designed to proceed during heat-up of the W compact for Cu infiltration process. It was found that the Ni-P added W skeleton underwent remarkable stucture change only during heating-up. its structure was composed of large necks of W particles above 0.5 in the ratio of neck to particle size and smooth pore channels. The infiltration experiment showed that the infiltration kinetics for the W-Ni-P followed well the linear relationship of h vs. $t^{1/2}$ the rate constant K of which was in good agreement with the theoretical value. On the other hand, in case of the pure W skeleton a lower K value by 20% than the theoretical one was obatined. Such discrepancy is discussed in terms of skeleton structure induced infiltration mechanics.

  • PDF

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

The Effect of Heat Treatment on the Fatigue Crack Propagation in SM40C Steel (SM40C 강의 열처리가 피로균열전파속도에 미치는 영향)

  • Keum, C.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 1990
  • The effect of the microstructural change on the near threshold fatigue crack growth rate in SM40C steel has been studied using the ${\Delta}K$ decreasing method. Below the total strain amplitude of 0.56%, cyclic softening occured, whereas above this value cyclic hardening occurred in the pearlitic lamellar structure. However, in the spherodized structure the cyclic hardening solely occurred. The crack growth rate in the near-threshold region was decreased with increasing prior austenite grain size and this was due to surface roughness. The crack growth rate of the spherodized structure was lower than that of the pearlite lamellar structure and the ${\Delta}K_{th}$ of the former was higher than that of the latter. It was understood that the crack propagates preferentially through the ferrite phase. The intergranular facets in the near-threshold region appeared in the spherodized structure.

  • PDF

NMR Studies on the N-terminal Acetylation Domain of Histone H4

  • Bang, Eun Jeong;Lee, Chang Hun;Yun, Jong Bok;Cheong, Ju Hui;Lee, Dae Yun;Lee, Won Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.507-513
    • /
    • 2001
  • Histones, nuclear proteins that interact with DNA to form nucleosomes, are essential for both the regulation of transcription and the packaging of DNA within chromosomes. The N-terminal domain of histone H4 which contains four acetylation sites at lysines, may play a separate role in chromatin structure from the remainder of the H4 chain. NMR data suggest that H4NTP peptide does have relating disordered structure at physiological pH, however, it has a defined structure at lower pH conditions. The solution structure calculated from NMR data shows a well structured region comprising residues of Val21-Asp24. In addition, our results suggest that the H4NTP prefers an extended backbone conformation at acetylation sites, however, it (especially Lys 12 ) became more defined structures after acetylation for its optimum function.

A Comparative Experiment on the Hydrate Structures I and II for the Solid Transportation of Natural Gas (천연가스 고체화수송을 위한 하이드레이트 구조 I과 II에 대한 비교실험)

  • 김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.674-682
    • /
    • 2003
  • Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. Also, 1m$^3$ hydrate of natural gas can be decomposed to 200 m$^3$ natural gas at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water and produced to hydrate. Therefore the hydrate is great as a means to transport and store natural gas. So, the tests were performed on the formation of natural gas hydrate is governed by the pressure, temperature, gas composition etc. The results show that the equilibrium pressure of structure II is approximately 65% lower and the solubility is about 3 times higher than structure I. Also if the subcoolings of structure I and structure II are more than 9 K and 11 K respectively, the hydrates are rapidly formed.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

Comparison of Hygrothermal Performance between Wood and Concrete Wall Structures using Simulation Program

  • Yu, Seulgi;Chang, Seong Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.283-293
    • /
    • 2016
  • Owing to an increase in the air tightness of recent buildings, the natural ventilation rate was significantly lowered and the removal of accumulated moisture became difficult in these buildings. The hygrothermal performance of these buildings should be carefully considered to provide comfortable indoor environment by removing the moisture condensation risk and the mold growth potential. In this study, hygrothermal performance of two selected wall structures was investigated based on WUFI simulation program. The results displayed that the indoor temperature had impact on the moisture accumulation in the insulation layer for both modeled walls, showing that lower indoor temperature resulted in higher moisture accumulation, especially in the wood frame structure. Also, the yearly moisture accumulation profile exhibited a downward shift throughout the year by adding a vapour retarder with a lower sd-value. In addition, both of the two walls have condensation risk in winter, due to low temperature level. The wood frame structure has a bigger fluctuation and higher condensation risk than the concrete structure.