• Title/Summary/Keyword: Lower Limb Joint

Search Result 189, Processing Time 0.031 seconds

The Effects of Constraint-induced Movement Therapy on Affected Upper Limb Functions in Patients with Hemiplegia (뇌졸중 후 편마비 환자의 건측억제-환측유도 운동이 환측 상지기능에 미치는 효과)

  • Yoo, Gwang-Soo;Bae, Joung-Hee
    • Research in Community and Public Health Nursing
    • /
    • v.17 no.4
    • /
    • pp.482-491
    • /
    • 2006
  • Purpose: Hemiplegia patients who were attacked by a stroke suffer from hemiplegic disabilities as well as motor disabilities. For them, rehabilitation cure is being carried out broadly. However, it is not enough for them to use the upper extremity than the lower extremity. For the use of the upper extremity, we examined the effect of constraint-induced movement therapy developed in this research on patients who experienced a stroke following hemiplegia. Method: For this study we selected 36 stroke patients who were registered at the community health center through accidental sampling, and assigned 21 of them to the experimental group, and 15 to the control group. The experimental group had constraint-induced movement therapy for 5 days and 7 hours a day from 9 to o'clock in the morning 9 to 4 o'clock in the afternoon 4 including warmup exercise and main exercise in the rehabilitation room, whereas the control group were restricted. Result: As a result of constraint-induced movement therapy, affected side elbow joint flexion range, side shoulder joint extension range and side shoulder joint of the flexion range of motions increased obviously in the experimental group compared to those in the control group. Conclusion: The result above clearly shows that constraint-induced movement therapy is an effective intervention for the rehabilitation of hemiplegia patients in increasing affected side elbow joint of the flexion range of motion, the shoulder joint extension, and the increase of flexion range of motion.

  • PDF

Treatment of Diabetic Charcot Arthropathy (당뇨병성 샤콧 관절의 치료)

  • Chung, Hyung-Jin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.4
    • /
    • pp.243-250
    • /
    • 2013
  • Diabetic Charcot arthropathy is a severe joint disease in the foot and ankle that can result in fracture, permanent deformity, limb loss. Although recent research has improved our level of knowledge regarding its etiology and treatment, it still remains a poorly understood disease. It is a serious and potentially limb-threatening lower-extremity late complication of diabetes mellitus and its diagnosis is commonly missed upon initial presentation. Clinicians treating diabetic patients should be vigilant in recognizing early signs of acute Charcot arthropathy, such as pain, warmth, edema, or pathologic fracture in a neuropathic foot. Early detection and prompt treatment can prevent joint and bone destruction. If left untreated, it can reduce overall quality of life and dramatically increase morbidity and mortality of patients. The goal of this manuscript is to evaluate the current concepts of Charcot arthropathy through review of various literature and help clinicians decide the treatment strategy.

Biomechanical Properties of the Anterior Walker Dependent Gait of Patients with Knee Osteoarthritis (무릎관절 골관절염 환자의 보행기 보행에서 생역학적 특성)

  • Lee, In-Hee;Kwon, Gi-Hong;Park, Sang-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2013
  • Purpose: Osteoarthritis occurs in many different joints of the body, causing pain, stiffness, and decreased function. The knee is the most frequently affected joint of the lower limb. The aim of this study was to investigate the differences of biomechanics between independent gait and anterior walker dependent gait of patients with osteoarthritis of the knee. Methods: Lower limb joint kinematics and kinetics were evaluated in 15 patients with knee osteoarthritis when walking independently and when walking with an anterior walker. Participants were evaluated in a gait laboratory, with self-selected gait speed and natural arm swing. Results: When walking with a dependent anterior walker, participants walked significantly faster (p<0.01), using a longer stride length (p<0.01), compared to independent gait. When walking with a dependent anterior walker, participants exhibited significantly greater knee flexion/extension motion (p<0.01) and lower knee flexion moment (p<0.05) compared to independent gait. When walking with a dependent anterior walker, participants showed significantly greater peak ankle motion (p<0.01), ankle dorsiflexion/plantarflexion moments (p<0.01), and ankle power generation (p<0.05) compared to independent gait. Conclusion: These biomechanical properties of gait, observed when participants walked with a dependent anterior walker, may be a compensatory response to impaired knee function to allow sufficient power generation for propulsion. Therefore, rehabilitative strategies for patients with osteoarthritis of the knee are needed in order to improve not only knee function but also hip and ankle function.

Analysis of Lower Limb Joint Angle and Rotation Angle of Tennis Forehand Stroke by Stance Pattern (스탠스 유형에 따른 테니스 포핸드 스트로크의 하지관절각도와 회전각도 분석)

  • Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kuk-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • The purpose of this study was to analyze the kinematics variables of during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study, who have never been injured for last six months, in Busan. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system. The following kinematic variables were analyzed in relation to angle of segment( shoulder, hip and knee joint). The conclusion were as follow: 1. The angle of hip joint represented at impact that horizontal swing was not significant difference by stance patterns but vertical swing was increased in open stance than square and semi-open stance. 2. The angle of both knee was not significant difference between all stance types and swing patterns. 3. The angle of shoulder, hip and knee joint rotation showed that open stance was increased than square and semi-open stance in all swing types and event.

Effect of CLX Training Combined with PNF Pattern on Balance Ability

  • Jung, Ji-hoon;Kim, Min-ju;Woo, Hee-jung;Kim, Yi-seul;Kim, Myung-hee;Song, Seung-ryul;Kang, Se-mi;Choi, Yi-wha;Kim, Jung-hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Background: PNF patterns are the basis of human motion and can be expected to improve joint motion and coordination. Combined physical training with CLX training and PNF patterns can help to improve balance and perform functional mobility in the lower limb. The purpose of this study is to confirm the effect of CLX training combined with PNF pattern on balance ability. Design: Randomized Controlled Trial. Methods: Total 16 persons participate in this study and were randomly divided in two groups the experimental group and control group. In the experimental group, exercise program with PNF pattern and CLX was performed total 24 times for 8 weeks. In the exercise program, the PNF pattern composed of D1F and D2F was applied with CLX in five positions. Single limb hop test, Y-balance test and Balance Error scoring system were performed to evaluate the balance ability according to the interventions. Results: In the single limb hop, the experimental group revealed a significant difference than a control group (p<0.05).The result of balance error scoring system, experimental group revealed significant differences between before and after training and revealed significant differences than a control group (p<0.05). In the Y-balance test, the experimental group revealed significant differences than a control group in both side. Conclusion: The results of this study showed that the CLX exercise in combination with the PNF pattern had a positive effect on enhancing the balance ability of the normal adult and performing the functional mobility of the lower limb.

Kinetic analysis of the lower limb in visual handicap children (시각장애 아동의 보행 시 하지의 운동역학적 분석)

  • Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3952-3958
    • /
    • 2011
  • This study was to investigate the difference in gait pattern between the visual handicap children and non handicap children in by analyze the biomechanical variation and pattern of lower limb. Therefore, we have made a choice of four visually handicapped children and two subjects, who had no medical disorder for the last six months. In order to collect the gait pattern data of each group, we have used six infrared cameras and one forceplate Also, we have used QTM program to collect the raw data and Visual3D program to calculate kinetic variable. The results were as follows, An/Posterior GRF of breaking phase and propulsion phase in stance phase was lower in visual handicapped children than that of non handicapped children and breaking phase was longer than propulsion phase. extension moment at the ankle was quite lower than general gait pattern and there was little variation at the knee joint which makes the results differ from the general gait pattern. However, hip joint moment was relatively higher than that of other joints. Mechanical variation of lower limb, in case of foot and shank, showed similar results. but generated very low mechanical energy. In thigh, the form of mechanical energy generation was slightly different in each group but generated more mechanical energy than other segments.

Comparisons of Kinematic Factors and Stiffnesses of the Lower-limb Joints between Transfemoral Amputees and Normal Adults (대퇴절단자와 정상인 걸음걸이의 운동학적 요인과 발목관절 강성 비교)

  • Yi, Jae-Hoon;Lee, Jung-Ho;Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • The purpose of this study was to compare kinematic variables and stiffnesses of ankle joints between normal person and transfemoral amputee gait in order to develop or fit prosthetic leg. Twenty subjects (ten normal persons and ten transfemoral amputees) participated in this experiment, and walked three trials at a self-selected pace. The gait motions were captured with Vicon system and variables were calculated with Visual-3D. The velocity, stride length, stride width, cycle time, double limb support time and right swing time of gaits were statistically significant. Because coefficients of variability of normal persons on velocity, double limb support time and swing time were greater than transfemoral amputees, normal persons controlled these gait variables effectively. The stiffnesses of ankle joints were not statistically significant, but patterns of stiffnesses of ankle joints during three rockers were absolutely different. The negative correlations between stiffnesses of ankle joints and cycle time and swing time were presented. These differences suggest that developing and fitting prosthetic leg were demanded. Further studies should develop fitting program and simulator of prosthetic leg.

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.