• Title/Summary/Keyword: Low-temperature Sintering Method

Search Result 176, Processing Time 0.027 seconds

Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper

  • Hwang, Jin-Geun;Oh, Kyung-Sik;Chung, Tai-Joo;Kim, Tae-Heui;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.104-110
    • /
    • 2019
  • The low-temperature sintering behavior of AlN was investigated through a conventional method. $CaF_2$, CuO and Cu were selected as additives based on their low melting points. When sintered at $1600^{\circ}C$ for 8 h in $N_2$ atmosphere, a sample density > 98% was obtained. The X-ray data indicated that eutectic reactions below $1200^{\circ}C$ were found. Therefore, the current systems have lower liquid formation temperatures than other systems. The liquid phase showed high dihedral angles at triple grain junctions, indicating that the liquid had poor wettability on the grain surfaces. Eventually, the liquid was likely to vaporize due to the unfavorable wetting condition. As a result, a microstructure with clean grain boundaries was obtained, resulting in higher contiguity between grains. From EDS analysis, oxygen impurity seems to be well removed in AlN lattice. Therefore, it is believed that the current systems are beneficial for reducing sintering temperature and improving oxygen removal.

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition (Li2CO3와 B2O3를 첨가한 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 저온 소성 연구)

  • Lee, Sang Sub;Park, Young-Seok;Duong, Trang An;Devita, Mukhlishah Aisyah;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated microstructures, crystal structures, polarization, dielectric and electromechanical properties of 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST)-based piezoceramcs by adding Li2CO3 and B2O3 (LB) as sintering aids for low-temperature sintering. All samples were successfully synthesized using conventional solid-state reaction method and sintered at 950, 1,000, 1,050, 1,100 and 1,175℃ for 2 hours. Without LB, specimens required sintering temperatures over 1,175℃ for sufficient densification, while the addition of 0.10-mol LB decreased the sintering temperatures down to 950℃. The average grain size and dielectric properties of BNT-24ST-10LB ceramics were enhanced with increasing sintering temperature. We found that the low-temperature sintered BNT-24ST piezoceramics by adding LB showed the d33*value of 402 pm/V at 4 kV/mm after sintering at 1,050℃, which was better than that of high-temperature fired specimens sintered at 1,175℃ without LB (242 pm/V). We believe that the results of this study promise a candidate for low-cost multilayer ceramic actuator applications.

Fine Powder Synthesis and It첨s Sintering Characteristics of CaO-Stabilized $ZrO_2$ by Coprecipitation Method (공침법에 의한 CaO 첨가 안정화 $ZrO_2$의 미분말 합성 및 그 소결특성)

  • 박정일;이주신;최태운
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.563-571
    • /
    • 1996
  • In order to fabricate solid electrolyte CaO-stabilized ZrO2 of high density sintered body economically 13 mol% CaO-stabilized ZrO2 powders were synthesized by the coprecipitation method. The characteristics and sintering behavior of fine powder were investigated. The precipitates has the specific surface area of 193 m2/g and apperaed to be fine and spherical primary particles with a size of approximately 5nm. The crystalliza-tion temperture of CaO-stabilized ZrO2 was 462$^{\circ}C$. The tetragonal phase was stable in the low calcining tempe-rature regions and the cubic zirconia solid solution was formed from above 120$0^{\circ}C$ through an intermediate stage of formation of CaZrO3 By introducing fine powders washed with alcohol and ball-milling process after calcination the sintered body was possible to attain the value of above 92% of the theoretical density at low temperature of 120$0^{\circ}C$.

  • PDF

Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride (Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결)

  • Bai, Kang;Woo, Sang-Kuk;Han, In-Sub;Seo, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

A Study on the Manufacture of Composite W Powder for Low Sintering Temperature by Liquid Reduction Precipitation Method (액상환원침전법에 의한 저온활성화소결용 복합W분말의 제조방법 및 소결특성에 관한 연구)

  • 김창욱;이철;정인;윤성렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.207-218
    • /
    • 1995
  • Tungsten(W) metal has excellent properties in heat-resistance, corrison-resistance and impact-resistance but W-Metal is hard to sinter because higher than $2,000^{\circ}C$ is required to sinter W-powder. Con-sequently, a deposit technique of Nikel Phosphorus(NiP) on W-powber by the liquid reduction precipitation method was performed. Sintering temperature of the resulting W-NiP composite was lowered around to $1,000^{\circ}C$, and the mechanical properties of the sintered body was studied. The most suitable conditions for NiP thin film deposit on W-Powder by the liquid reduction precipitation method, which are composition, concentration, pH and temperature of the liquid reduction solution, were considered. The activated sintering was carried out in a reducing condition furnace. Components and properties of the sintered body were investigated by the density and the hardness measurements, X- ray diffraction analysis, and microscopic photographs of the surface. Quantity of NiP thin film on W-powder could be varied by the change of the liquid reduction solution composition. The sintering temperature of W-NiP composite powder is lowered to $950^{\circ}C$ from $2,000^{\circ}C$ and the hardness is increased (ca. 720 Hv). Large shrinkage could be observed since density was increased from 5.5 to 11.0 g/$cm^2$ which 86.2% of theoretical density. W metal and $Ni_3P$ crystal were detected through X-ray diffraction on the sintered body. Perfectly activated sintering was observed by microscopic photographs.

  • PDF

Effect of $B_{2}O_{3}$ addition on mechanical strength and microstructure of a porous $LiAlO_{2}$ electrolyte support for molten carbonate fuel cells (용융 탄산염 연료전지용 gamma $LiAlO_{2}$ 전해질 지지체의 미세구조 및 기계적 강도 변화에 대한 $B_{2}O_{3}$ 첨가의 영향)

  • Ham, Hyung-Chul;Yoon, Sung-Pil;Hong, Seong-Ah
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.54-59
    • /
    • 2007
  • A sintering aid, $B_{2}O_{3}$ have been included into a $LiAlO_{2}$ electrolyte support by a tape casting method in order to reinforce mechanical strength of the support for molten carbonate fuel cells [MCFCs). Starting idea originates from the low melting point of $B_{2}O_{3}$ ($450^{\circ}C$), which can provide the low temperature consolidation of ceramic materials. The mechanical properties and the microstructure changes of the $B_{2}O_{3}$-included electrolyte support were examined by scanning electron microscope, mercury porosimetry, X-ray powder diffraction [XRD], high temperature differential scanning calorimeter and three-point bending strength measurement. The mechanical strength was clearly improved by addition of $B_{2}O_{3}$. The increase of mechanical strength results from the neck growth of a new $LiAlO_{2}$ phase between $LiAlO_{2}$ particles by the liquid phase sintering. Average pore size and porosity of the electrolyte support reinforced by addition of the sintering aid, $B_{2}O_{3}$, was $0.24{\mu}m$ and 59%, respectively which were suitable microstructure of a matrix for an application of MCFCs.

  • PDF

Low Temperature Sintering and Tunable Dielectrics Properties of Thick Films added of Li2CO3 on BST (티탄산 바륨 스트론튬(BaxSr1-xTiO3)에 Li2CO3 첨가한 후막의 저온소결과 가변 유전특성)

  • Jeon, So-Hyun;Kim, In-Sung;Jung, Sun-Jong;Song, Jae-Sung;Yoon, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.747-753
    • /
    • 2006
  • (BaSr)$TiO_3$ (BST) thick films were prepared by tape casting method, using $BaTiO_3$ and $SrTiO_3$ powder slurry and their dielectric properties were investigated. With an additive, $Li_2CO_3$, the sintering temperature was lowered by $200^{\circ}C$. Sintering density was 5.7 g/$cm^3$ and the BST thick films exhibited a maximum dielectric constant, tunability at temperatures near phase transition point. Whilst their characteristics were deteriorated above the phase transition temperature, they were unchanged below the phase transition temperature, which is presumedly due to the acceleration of $90^{\circ}$ domain formation, its contribution to the relaxation of internal stress and the increase in sintering according to the replacement of Li.