• Title/Summary/Keyword: Low-temperature Heat Source

Search Result 280, Processing Time 0.023 seconds

Combustion Noise Characteristics in Gas and Liquid Flames (가스 및 분무화염의 연소소음 특성에 관한 실험연구)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

The Performance Improvement of a Gas Injection Heat Pump with a Flash Tank (기액분리기를 적용한 가스 인젝션 히트펌프의 성능 향상에 관한 실험적 연구)

  • Son, Kilsoo;Kim, Dongwoo;Choi, Sungkyung;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.297-305
    • /
    • 2017
  • Air-source heat pumps are widely used in residential heating systems. However, the decrease in the capacity of the heat pump is unavoidable when operating at very low and high ambient temperatures. The vapor injection technique is considered a promising technology to overcome this problem. Recent research on vapor injection cycles have mainly adopted a scroll compressor with an internal heat exchanger at severe operating conditions. This study measured the COP and EER of a gas injection heat pump using a flash tank with an inverter-driven rotary compressor at severe operating conditions. Compared to non-injection heat pumps, the heating capacity and COP of the gas injection heat pump improved up to 15% and 2.9%, respectively, at outdoor temperatures of $-10^{\circ}C$ to $7^{\circ}C$. The cooling capacity of the gas injection heat pump was 11% higher than the non-injection heat pump at an outdoor temperature of $35^{\circ}C$. At the same time, the EER of the gas injection heat pump was similar to that of the non-injection heat pump.

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.

A Study on the Thermal Analysis for the Robotic Arm of the Cord Blood Storage Tank (제대혈 용기 내부 로봇 암의 열해석에 관한 연구)

  • Yun, Sang-Kook;You, Sam-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.724-729
    • /
    • 2008
  • Umbilical cord blood has been recently considered an attractive potential alternative as a source of stem cell transplantation to curing diseases such as leukemia, cancers, immune disorders. Normally the stored system of the umbilical cord blood specimen is equipped with a computer-controlled robotic arm that enables the samples to locate the identification places in liquid nitrogen tank at regulated temperature as about $-196^{\circ}C$. As the half of robotic arm is in the air and the rest part is submerged in liquid nitrogen, the temperature of robotic arm varies from ambient to liquid nitrogen temperature. In this study the temperature variation of upper part of arm above tank lid was thermally analysed by using the commercial code of Ansys. The result of analysis was that the upper part of robotic arm was seriously frozen due to heat transfer from liquid nitrogen as low as -$120^{\circ}C$. In order to solve the frost problem of robotic arm, small PTFE tube block as resistance material was introduced into the lower part of tank lid instead of the whole stainless steel(SUS) robotic arm. The results showed that the temperature of robotic arm above the lid was higher enough, and this method would be one of the very effective measure to solve the problem.

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy

  • Kwon, Tae-Kyu;Jeon, Won-Suk;Pang, Du-Yeol;Choi, Kwang-Hun;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1328-1333
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of a new SMH actuator using a Peltier module. The SMH actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of the human body. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a functioning part has been developed. To improve the thermal conductivity of the hydrogen-absorbing alloy, an assembly of copper pipes has been used. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating of the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The new special metal hydride (SMH) actuator uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing alloys. The desirable characteristics of SMH actuator, which makes it suitable for the uses in medical and rehabilitation applications, have been also studied. For this purpose, the characteristics of the new SMH actuator for different temperature, pressure, and external load were explored.

  • PDF

LED Headlight, Safety and Application in Oral Surgery (구강 수술에 사용가능한 LED 헤드라이트의 안전성 및 실용성)

  • Yoo, Young-Sam;Heo, Geon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.187-192
    • /
    • 2010
  • Background and Objectives : LED(Light emitting diode) is recently introduced as a energy-saving light source in many area including agriculture and environment. In medical field it is known as bright and safe light source in surgical lighting including headlight. This study is aimed to test effectiveness and cost-saving of mountain-climbing headlight in comparison with xenon headlight. Materials and Methods : Internet market-available mountain-climbing headlight was compared with medical xenon headlight regarding heat generation after 30 minutes' usage, intensity of illumination and possible burn to the perioral skin. To get temperature data, 5 cases of tonsillectomy were done with the aid of LED headlight, while another 5 tonsillectomies were done using xenon headlight. Results : The temperatures of all light sources were below 45 degrees Celcius until finish of the surgery without burn or complications. No differences in operation time with both headlights. The maximal intensities of illumination were 24000 Lux for xenon, 20000 Lux for LED. Conclusion : Mountain-climbing headlight could be safe and helpful light source with low cost in simple oral surgery.

Genetic Diversity and Thermostabilitical Variants of Corbicula japonica from the Two Main Rivers in Korea (한국의 두 강으로부터 재첩의 유전적 종다양성과 열안정성 변이체)

  • Heo, Man-Gyu;Mun, Du-Ho;Heo, Heung-Uk
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • We examined the genetic variation within the species, the patterns of genetic diversty between populations, thermostability variations of enzymes and temperature tolerances of Corbicula japonica from the two main rivers In Korea. Starch gel electrophoresis was used to examine the genetic variation of 22 locl. Henting experiments of electrophoresis under the condition of 40$\pm$5$^{\circ}$ for 15$\pm$5 min disclose thermostabllity differences, called heat-sensitive and heat-resistant types, within each 디ectrophoretic allozyme. Genetic diversity at the natural species level was high (77.3%), whereas the extent of heat-treat groups was relatively low (52.6%). The genetic diversity trends to decrease from the source of two main siderable high genetic diversity compared with a mean value of C. japonica species, It is recommended that several populations of the species in Korea should be preserved.

  • PDF

A Study on the Mass Flow Effects to the Performance of PEMFC (고분자 전해질형 연료전지내의 질량유동이 성능에 미치는 영향)

  • Park, Chang-Kwon;Jo, In-Su;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.422-431
    • /
    • 2007
  • Polymer electrolyte membrane fuel cell(PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance and effect of temperature. These problems can be approached to be solved by using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management. In this paper, the present work is to develop an electrochemical model to examine the electrochemical process inside PEM fuel cell. A complete set of considerations of mass, momentum, species and charge is developed and solved numerically with proper account of electrochemical kinetics. When depth of gas channel becomes thinner, diffusion of reactant makes well into gas diffusion layer(GDL) and the performance increases. Although at low current region there is little voltage difference between experimental data of PEM fuel cell and numerical data. When the porosity size of gas diffusion layer for PEM fuel cell is bigger, oxygen diffusion occurs well and oxygen mass fraction appears high in catalyst layer.

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF