• Title/Summary/Keyword: Low-power System

Search Result 5,542, Processing Time 0.035 seconds

The A/D Converter for Low Power Multifunctional Sensor System (저전력 다기능 센서시스템 A/D Converter)

  • 박창규;김정규;이지원;김수성;최규훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1019-1022
    • /
    • 2003
  • This paper has proposed a 4- bit 20MHz Flash A/D converter design available analog signal processing and realized its intergrated circuit. The parallel comparison method A/D converter quantized analog signals swiftly using various converters. Also this theme has designed economic power dissipation circuit using a preamplifier of low volt & power CMOS comparator. Also the system was fabricated by Hynix 0.35um CMOS process.

  • PDF

Design of Fault Location System for High Voltage Underground Power Cable (지중송전선 고장점 탐색 장치 설계)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.603-605
    • /
    • 2006
  • To reduce inference of any power delivery failures in underground power cable, power system operators are trying to find effective way of finding fault location as soon as possible. But it is very difficult to find fault location exactly for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This new system monitors current and voltage of underground power cable by using low voltage and current sensors and if there are any accidents, it records its transient signal. Fault location is calculated by analyzing recorded signal. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested. In this rapers, we describe on describe of fault location system for underground power cable.

  • PDF

Bidirectional ZVS PWM Sepic/Zeta Converter with Low Conduction Loss and Low Switching Loss (저스위칭손실 및 저도통손을 갖는 양방향 ZVS PWM Sepic/Zeta 컨버터)

  • Paeng, S.H.;Lee, B.C.;Choi, S.H.;Kim, I.D.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.549-551
    • /
    • 2005
  • Bidirectional DC/DC converters allows transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, they are being increasingly used in many applications such as battery charger/dischargers, dc uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This paper proposes a new bidirectional Sepic/zeta converter. It has low swicthing loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system . The proposed converter also has both transformerless version and transformer one.

  • PDF

A Study on the Design of the rated insulation voltage of 690V for the low-voltage switchgear and controlgear (저압기기 정격절연전압 690V 개발시 고려사항에 대한 연구)

  • Kim, Myoung-Seok;Kim, Jong-Yeok;Park, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.961-963
    • /
    • 2000
  • Most of the application standard of the low-voltage devices have applied one the IEC standard another the UL standard. European union applied the IEC60947-1 standard has not exceed 1000V a.c. or 1500V d.c.. Therefore. it is necessary to the low-voltage device has expended for rated operational voltage with our products. The export of European market shall be made for the CE-Marking in accordance with IEC60947-1 ( Low-voltage switchgear and controlgear). We shall be considered for the requirement with the IEC standard. In this time to study for power supply system at EU ( European union. At that time for design and development in order to the construction and test method among the study for the rated insulation voltage at less then 690V.

  • PDF

Numerical analysis on two-phase flow-induced vibrations at different flow regimes in a spiral tube

  • Guangchao Yang;Xiaofei Yu;Yixiong Zhang;Guo Chen;Shanshan Bu;Ke Zhang;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1712-1724
    • /
    • 2024
  • Spiral tubes are used in a wide range of applications and it is significant to understand the vibration introduced by two-phase flow in spiral tubes. In this paper, the numerical method is used to study the vibration induced by the gas-liquid two-phase flow in a spiral tube with different flow regimes. The pressure fluctuation characteristics at the pipe wall and the solid vibration response characteristics are obtained. The results show that the motion of small bubbles in bubbly flow leads to small pressure fluctuations with low-frequency broadband (0-50 Hz). The motion of the gas plug in the plug flow causes small amplitude periodic pressure fluctuation with a shortened low-frequency broadband (0-15 Hz) compared to the bubbly flow. The motion of the gas slug in the slug flow causes large periodic fluctuations in pressure with a significant dominant frequency (6-7 Hz). The wavy flow is very stable and has a distinct main frequency (1-2 Hz). The vibration regime in the bubbly flow and wave flow are close to the first-order mode, and the vertical vibrating component is dominant. The plug flow and slug flow excite higher-order vibration modes, and the lateral vibration component plays more important part in the vibration response.

Rack-Level DC Power Solution for Volume Servers

  • Kwon, Won-Ok;Seo, Hae-Moon;Choi, Pyung
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.940-949
    • /
    • 2010
  • Rack-level DC power supply is the optimal technology for providing DC power to a volume server without any power infrastructure changes in an existing AC data center. In this paper, we propose a smartly controllable and monitorable DC rack power system. The proposed system improves power efficiency by changing the power distribution architecture of a conventional method in the rack. We developed an optimal power control method in multipower modules to provide high efficiency at low loads. In addition, the proposed system provides real-time web monitoring of the rack power and environment around a rack. In our experiments, the proposed system improved the power efficiency by over 10% compared to an AC power system providing N+1 redundant power and power monitoring.

Low Loss Power Dividing Switch for Indoor Microwave Power Distribution (마이크로파 실내 배전용 저반사형 전력 분배 스위치)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.90-94
    • /
    • 2013
  • A low loss power dividing switch in a indoor microwave power distribution system is proposed and designed with a various power dividing ratio. Switching characteristics are analyzed by use of the S-parameter of the switch. Newly proposed switch showed a very low return loss less than -30dB at the operating frequency of 2.45GHz. Three kinds of the switch in which we take out individually 1/2, 1/3 and 1/4 of the input power were fabricated, and measured the delivered, transmitted, and return loss power ratio. Simulated results showed that the lower power ratio is, the better accurate operating performance shows. This switch can switch the input power from 4.5% to 58% with the variance of 5% output power. The experimental results are in good agreement with the simulation within the return loss of 1%.

A new efficient algorithm for test pattern compression considering low power test in SoC (SoC환경에서의 저전력 테스트를 고려한 테스트 패턴 압축에 대한 효율적인 알고리즘)

  • 신용승;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.85-95
    • /
    • 2004
  • As the design complexity increases, it is a major problem that the size of test pattern is large and power consumption is high in scan, especially system-on-a-chip(SoC), with the automatic test equipment(ATE). Because static compaction of test patterns heads to higher power for testing, it is very hard to reduce the test pattern volume for low power testing. This paper proposes an efficient compression/decompression algorithm based on run-length coding for reducing the amount of test data for low power testing that must be stored on a tester and be transferred to SoC. The experimental results show that the new algorithm is very efficient by reducing the memory space for test patterns and the hardware overhead for the decoder.

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

A Power Factor Analysis due to Interconnecting Photovoltaic Resource (계통연계형 태양광전원 투입에 따른 역률 분석)

  • Kim, Sang-Hyub;Rhee, Sang-Bong;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.503-505
    • /
    • 2008
  • Photovoltaic(PV) resource connected in the power system can be affect to the power quality. To analyze the power quality, this paper simulate the variation of power factor by PV resource connected to the low voltage system. The power factor calculator and full-bridge inverter of PV system are modeled by EMTP/MODELS. Simulation results according to the PV capacity and load are presented.

  • PDF