• Title/Summary/Keyword: Low-power Operating Systems

Search Result 268, Processing Time 0.025 seconds

A Study on the Analysis of the Performance and Efficiency of a Low-pressure Operating PEMFC System for Vehicle Applications Using MATLAB/Simulink (MATLAB/Simulink를 이용한 자동차용 상압형 PEM 연료전지 시스템의 성능 및 효율 분석 연구)

  • Park, Raehyeok;Kim, Han-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.393-400
    • /
    • 2013
  • The air supply system has a significant effect on the efficiency of polymer electrolyte membrane fuel cell (PEMFC) systems. The performance and efficiency of automotive PEMFC systems are greatly influenced by their air supply system configurations. This study deals with the system simulation of automotive PEMFC systems using MATLAB/Simulink framework. In this study, a low-pressure operating PEMFC system adopting blower sub-module (turbo-blower) is modeled to investigate the effects of stack operating temperature and air stoichiometry on the parasitic power and efficiency of automotive PEMFC systems. In addition, the PEMFC net system efficiency and parasitic power of air supply system are mainly compared for the two types (low-pressure operating and high-pressure operating) of automotive PEMFC systems under the same net power conditions. It is suggested that the obtained results from this system approach can be applied for establishing the novel operating strategies for FC vehicles.

Design and Implementation of eRTOS Real-time Operating Systems for Wearable Computers (웨어러블 컴퓨터를 위한 저전력 실시간 운영체제 eRTOS 설계 및 구현)

  • Cho, Moon-Haeng;Choi, Chan-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.42-54
    • /
    • 2008
  • In recent years, embedded systems have been expanding their application domains from traditional embedded systems such as military weapons, robots, satellites and digital convergence systems such as celluar phones, PMP(Portable Multimedia Player), PDAs(Personal Digital Assistants) to Next Generation Personal Computers(NGPCs) such as eating PCs, wearable computers. The NGPCs are network-based, human-centric digital information devices diverged from the traditional PCs used mainly for document writing, internet searching and database management. Wearable computers with battery capacity and memory size limitations have to use real-time operating systems with small footprints and low power management techniques to provide user's QoS in spite of hardware constraints. In this paper, we have designed and implemented a low-power RTOS (called eRTOS) for wearable computers. The implemented eRTOS has 18KB footprints and the dynamic power management and the device power management schemes are adapted in it. Experimental results with wearable computer applications show that the low power techniques could save energy up to 47 %.

Effects of Key Operating Parameters on the Efficiency of Two Types of PEM Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications

  • Kim Han-Sang;Lee Dong-Hun;Min Kyoungdoug;Kim Minsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1018-1026
    • /
    • 2005
  • The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were con­sidered. The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using muli­object variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.

Efficiency Improvement of Uninterruptible Power Supply Systems (무정전 전원장치 효율 향상에 대한 연구)

  • Oh, Heun-Gil;Kwon, Jong-Won;Park, Yong-Man;Odgerel, Odgerel;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.288-290
    • /
    • 2006
  • An efficiency improving method for Uninterruptible Power Supply System(UPS) was developed by using OP-AMP based application circuits such as voltage detection device, current detection device and static switch control device. The efficiency improving algorithm was made by mixing the operating concepts of On-Line type UPS with the operating concepts of Off-Line type UPS. The UPS' inverter does not work if the UPS' output load current is not higher than the low load operating current which is about 0-30(%) of the UPS' output load capacity. The low load operating current is adjustable within the half of the UPS' output load capacity. If the UPS' output load current is rising over than the low load operating current, the UPS' inverter starts working and the inverter output power feeds to the loads of UPS. If UPS' input power breaks out while UPS' inverter does not operate because the load current is low, the inverter starts working within 4(ms) with excessive output voltage which is ${\pm}$8(%) of normal UPS' output voltage. Like these. UPS can continuously feeds power to it's load device and reduce power consumptions.

  • PDF

The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant (원전 증기발생기 수위제어를 위한 MPC 제어기 개발)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

Design of a Low-Power MOS Monolithic Peak Detector (저전력 MOS 모놀리식 피크 감지기의 설계)

  • 박광민;백경호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.217-220
    • /
    • 2000
  • In this paper, A low-power MOS monolithic peak detector is presented. Designed for monolithic and low-power characteristics, this MOS peak detector can be integrated easily on the same chip as a module of large communication systems. The simulation results of this peak detector which was composed with four NMOSs and two capacitors show the power dissipation of 0.972㎽ and the good operations for 2㎓ operating pulse frequency. Therefore, it may be used as a functional block for various signal processing systems.

  • PDF

Examination of Conductor and Sheath Temperatures Dependent on the Load Currents through High-Power Live Cables at a Power Station (발전소에서 활선 고전력 케이블의 운전 부하전류에 따른 도체 및 피복표면의 온도 분석)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.213-218
    • /
    • 2017
  • High-voltage power systems operate in order to generate and transmit electric power at power stations. Compared to low-power systems, high-power systems are complex in structure, large-scale, and expensive. When high-power cable accidents occur, most facilities are incapacitated-including low-power systems-causing huge economic losses. Great care must therefore be taken in designing, installing and managing power systems. Although dependent on installation circumstances and usage conditions, in some cases the cross-sectional areas of cables fall short of the critical area due to the expansion of and improper design and installation of power facilities. In this situation, the exceeded ampacity (allowable current) above the critical value caused by the operating current initiates the deterioration processes of power cables. In order to systematically monitor power cables operating at power stations, we have developed the first device of its kind in Korea. In this paper, we present the analyzed characteristics of expected temperatures of cables based on the load current of high-voltage cables operating at Korean Western Power Co. Ltd. We can predict the lifetime of cables by analyzing the temperature obtained from our device.

Embedded Operating Systems;Windows CE, Embedded Linux, pSOS, uC/OS

  • Park, Kwang-Hyun;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1976-1981
    • /
    • 2003
  • Except a desktop computer and workstation, an embedded system is a system containing microprocessors. While a desktop computer and a workstation are designed for a general purpose, an embedded system is designed for a dedicated purpose. Thus, an embedded system must meet some constraints such as low power consumption, low cost, small size, real-time, or user-defined ones. A simple and low cost embedded system may be able to be designed without using embedded operating systems (OS). However, considered design time and effort, some embedded system had better be designed with using embedded OS. Under given constraints and purpose of some embedded systems, one embedded OS can save more time, cost, and effort in designing those embedded systems than others. This paper compares four embedded OSs, Windows CE, Embedded Linux, pSOS, and uC/OS. It analyzes several issues of embedded OS such as process scheduling, inter-process communication (IPC), memory management, and network support. Also, it describes the product of each embedded OS.

  • PDF

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

A Study for Determining the Permissible Operating Range of Distributed Generation interconnected into Distribution System (배편계통에 도입되는 분산전원의 운전가능범위 결정에 관한 연구)

  • Kim, Tae-Eung;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • This paper describes a new method for determining the permissible operating range of DG(Distributed Generation) when DG is introduced into power distribution systems of which the voltage is controlled by LDC(Line Drop Compensator). Much of the DG installed during the next millennium will be accomplished through the reconstruction of the electric power industry. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC. This paper presents a method for determining the permissible operating range of DG for proper voltage regulation of power distribution systems with LDC. Proposed method has been applied to a 22.9 kV model and practical distribution systems, and its result is almost identical with the simulation result.