• Title/Summary/Keyword: Low-loss Interconnection

Search Result 19, Processing Time 0.023 seconds

The effect of I-V characteristic and hot-spot by solar cell and interconnection circuit in PV module (PV모듈에서 태양전지와 Interconnect회로의 구성이 I-V특성과 Hot Spot에 미치는 영향)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.241-246
    • /
    • 2008
  • In this paper, we analyze the I-V curve and hot-spot phenomenon caused by solar cells' serial and parallel connected circuit. The mis-match loss of parallel interconnection with low Isc string decrease lower than serially interconnected one and temperature caused by hot-spot does. Also, mis-match loss of parallel interconnection with low Voc string increase more than serially interconnected one. The string having low Voc happened hot-spot phenomenon when open circuit. The bad solar cell in string gives revere bias to good solar cell and make hot-spot phenomenon. If we consider the mis-match loss, when designing PV module and array. the efficiency of PV system might increase.

  • PDF

A Multi-chip Microelectrofluidic Bench for Modular Fluidic and Electrical Interconnections (전기 및 유체 동시접속이 가능한 멀티칩 미소전기유체통합벤치의 설계, 제작 및 성능시험)

  • Chang Sung-Hwan;Suk Sang-Do;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-378
    • /
    • 2006
  • We present the design, fabrication, and characterization of a multi-chip microelectrofluidic bench, achieving both electrical and fluidic interconnections with a simple, low-loss and low-temperature electrofluidic interconnection method. We design 4-chip microelectrofluidic bench, having three electrical pads and two fluidic I/O ports. Each device chip, having three electrical interconnections and a pair of two fluidic I/O interconnections, can be assembled to the microelectofluidic bench with electrical and fluidic interconnections. In the fluidic and electrical characterization, we measure the average pressure drop of $13.6{\sim}125.4$ Pa/mm with the nonlinearity of 3.1 % for the flow-rates of $10{\sim}100{\mu}l/min$ in the fluidic line. The pressure drop per fluidic interconnection is measured as 0.19kPa. Experimentally, there are no significant differences in pressure drops between straight channels and elbow channels. The measured average electrical resistance is $0.26{\Omega}/mm$ in the electrical line. The electrical resistance per each electrical interconnection is measured as $0.64{\Omega}$. Mechanically, the maximum pressure, where the microelectrofluidic bench endures, reaches up to $115{\pm}11kPa$.

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

LTCC Technology for 60 GHz Applications

  • Kim, Hae-Cheon;Kim, Dong-Young;Mun, Jae-Kyoung;Jun, Dong-Suk;Yu, Hyun-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2006.10a
    • /
    • pp.255-267
    • /
    • 2006
  • LTCC Technology is very suitable for 60 GHz application $\blacksquare$ LTCC substrate shows low loss at 60 GHz. - low insertion and return losses $\blacksquare$ Microstrip or CBCPW line is sultable for transmission lines at 60 GHz. - low loss (0.1dB/mm) $\blacksquare$ Single ribbbon bonding is adequate for interconnection - simple - low loss (0.1dB/bonding) $\blacksquare$ Characteristics of MMIC module - Gain difference (${\Delta}S21$) : 0.4 dB

  • PDF

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives (Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발)

  • Yim, Byung-Seung;Lee, Jeong Il;Oh, Seung Hoon;Chae, Jong-Yi;Hwang, Min Sub;Kim, Jong-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

Low-Loss Multimode Waveguides Using Organic-Inorganic Hybrid Materials

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.290-292
    • /
    • 2004
  • Multimode channel waveguides were fabricated using a direct UV patterning technology from thick films deposited by the one-step dip-coating of an organic/inorganic hybrid material (ORMOCER(equation omitted). The core size of the covered ridge waveguide was 43${\times}$51 $\mu\textrm{m}$$^2$; the waveguides can be readily prepared for multimode applications by direct UV patterning. The waveguides exhibited smooth surface profiles and a low optical loss of 0.07 ㏈/cm at the most important wavelength (850nm) used for optical interconnects.

A Low-Loss Patch LTCC 60 GHz BPF Using Double Patch Resonators

  • Lee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.570-572
    • /
    • 2012
  • In this paper, a three-dimensional (3-D) low-loss and wide-band BPF based on low-temperature co-fired ceramic (LTCC) has been presented for mm-wave wireless communication applications. The proposed BPF is designed in a 6-layer LTCC substrate. The double patch resonators are fully integrated into the LTCC dielectrics and vertical via and planar CPW transitions are designed for interconnection between embedded resonators and in/output ports and MMICs, respectively. The designed BPF was fabricated in a 6-layer LTCC dielectric. The fabricated BPF shows a centre frequency (fc) of 53.23 GHz and a 3dB bandwidth of 14.01 % from 49.5 to 56.9 GHz (7.46 GHz). An insertion loss of -1.56 dB at fc and return losses below -10 dB are achieved. Its whole size is $4.7{\times}1.7{\times}0.684mm^3$.

  • PDF

Low-Loss Polymeric Waveguides Having Large Cores Fabricated by Hot Embossing and Micro-contact Printing Techniques

  • Yoon, Keun Byoung
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.474-477
    • /
    • 2004
  • We present simple, low-cost methods for the fabrication of polymeric waveguides that have large core sizes for use as optical interconnects. We have used both hot embossing and micro-contact printing techniques for the fabrication of multimode waveguides using the same materials. Rectangular and large-core (60${\times}$60 $\mu\textrm{m}$$^2$) channels were readily prepared when using these methods. The dimensions of the embossed and printed channels were the same as those of the pattern on the original master. The polymeric waveguides that we fabricated with large core sizes exhibited a low propagation loss of 0.1 dB/cm at 850 nm, which indicates that hot embossing and micro-contact printing are suitable techniques for the fabrication of optical waveguides having large-core.

A Low Insertion Loss CBFGCPW-Microstrip Transition and Its Application to MIC Module Integration (저 손실을 갖는 CBFGCPW-Microstrip 천이 구조의 해석 및 MIC 모듈 집적화에 응용)

  • Lim, Ju-Hyun;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.809-818
    • /
    • 2007
  • Generally, carriers on which microwave circuits are mounted are used as building blocks of MIC module for the convenience of MIC assembly and the unit module characterization. However the interconnection of the microstrip-based carriers by wire bonding causes the serious problem of mismatch and results in the higher insertion loss as frequency becomes higher. The gap and the depth between carriers are considered as the main reason of the degradation. The CPW can be the solution to cope with such problem considering its field are dominantly concentrated on the top plane. In this paper, we propose and demonstrate the CBFGCPW to microstrip transition with the low insertion loss that can be applied without causing the MIC carrier interconnection problem.