• 제목/요약/키워드: Low-flow channel

검색결과 351건 처리시간 0.022초

좁은 채널 내부의 대향류 화염 거동에 관한 실험적 연구 (An Experimental Study on the Flame Behavior of Opposed Flow Flames in Narrow Channels)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-12
    • /
    • 2012
  • In this study, opposed flow combustion was re-visited in a narrow channel. Various flame behaviors were observed. Due to the confined structure of the combustor in this study, flame structures at very narrow strain rate could be stabilized and their characteristics were investigated. This study will be helpful to understand overall flame behavior of non-premixed flame in a narrow combustion space, and will also be useful to develop small combustors.

  • PDF

플로우 4경로모형의 마음상태와 플레이(play) (State of Mind in the Flow 4-Channel Model and Play)

  • 손준상
    • 마케팅과학연구
    • /
    • 제17권2호
    • /
    • pp.1-29
    • /
    • 2007
  • 본 연구에서는 플로우 4경로모형에서 마음상태와 플레이(play)가 하는 역할과 그 결과를 분석하고자 하였다. 이를 위해서 선행요인인 도전감 및 숙련도의 조합에 따른 마음상태를 측정하고, 플레이를 플로우 4경로모형에 투입하여 플로우이론에서 가설적으로 제시하고 있는 마음상태와 플레이의 영향관계를 분석하였다. 또한 플로우와 플레이의 웹충성도에 대한 영향도 분석하였다. 가설검정 결과에서는 첫째, 도전감과 숙련도의 조합에 따라 플로우, 두려움, 지루함, 무관심의 마음상태가 형성되는 것이 확인되었다. 그러나 두려움의 수준은 도전감과 숙련도가 모두 가장 낮은 무관심집단에서 가장 높게 나타났다. 이런 결과는 플로우이론의 설명과 일치하지 않는데, 무관심집단은 두려움으로 인해 온라인 쇼핑을 회피하는 것으로 해석할 수 있다. 둘째, 도전감과 숙련도에 따라 구분된 집단 간에 플레이 수준에서 유의적인 차이가 있는 것으로 나타났다. 셋째, 플레이는 플로우에 대해서는 정(+)의 영향을 미쳤고, 지루함에 대해서는 부(-)의 영향을 미쳤다. 그러나 두려움과 무관심에 대해서는 부(-)의 영향효과가 유의적이지 않았다. 넷째, 플레이와 플로우는 웹충성도에 유의적인 정(+)의 영향을 미치는 것으로 나타났고, 부정적 마음상태인 두려움, 지루함, 무관심은 웹충성도에 부(-)의 영향을 미쳤다. 플레이의 웹충성도에 대한 영향은 부정적 마음상태에서 강화되는 것으로 나타났다. 본 연구에서는 플로우 4경로모형에서의 마음상태를 확인하기 위해 이를 측정할 수 있는 척도를 개발하여 사용하였다. 마음상태별로 수립한 4개의 구조방정식 모형을 통해 플로우 뿐만 아니라 두려움, 지루함, 무관심의 부정적 마음상태에서 발생하는 영향관계를 종합적으로 입증하였다. 이런 결과는 부정적 마음상태의 영향을 확인하였다는 점에서 이론발전에 기여하였다고 본다. 또한, 플로우모형에서 플레이의 역할을 규명하였다는 점에서도 의미가 있다. 본 연구는 실무적으로도 인터넷 소비자들의 마음상태에 따른 시장세분화와 플레이를 활용한 마케팅전략수립에 시사점을 제공한다.

  • PDF

격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향 (Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method)

  • 신명섭;윤준용;변성준;김각중
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사 (Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

생태하천복원을 위한 물리서식처 모형의 적용 : 안양천 중류를 대상으로 (Test of a Physical Habitat Model for Stream Restoration : A Case Study on Midstream of Anyang-Cheon)

  • 백경오;김창환
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.35-41
    • /
    • 2015
  • This study focuses on whether a physical habitat model, River2D, is useful to assess and design stream restoration. To achieve the aim, the habitat suitability for Zacco Platypus was analyzed using River2D at midstream of the Anyang-Cheon through modifying the low flow channel and changing the flow discharge. The River2D simulation results show that the inhabited environment for Zacco Platypus is improved by increasing the sinuosity of the low flow channel, and vice versa. Also the inhabited environment for Zacco Platypus gets worse when there is no additional flow for maintenance water supply at the stream flowing through cities. In this respect, the physical habitat simulation study based on the River2D model is useful because it provides a practical guidance in designing stream restoration.

작은 유로 내에서의 흐름응축 열전달 (I) -새로운 실험기법의 개발 - (Flow Condensation Inside Mini-Channels (I) -Development of New Experimental Technique-)

  • 신정섭;김무환
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1424-1431
    • /
    • 2004
  • With traditional experimental methods such as the secondary fluid (e.g., water) calorimetric method, it is very difficult to accurately test the local condensation heat transfer inside mini-channels. Hence, there are large discrepancies between the results of previous studies. The experimental methods as well as unidentified sources of uncertainties could be reasons for such discrepancies. In this study, innovative experimental techniques were developed to measure the in-tube condensation heat transfer coefficient. With these techniques, very low heat dissipation rates such as several watts from the mini-channel could be estimated and low mass flow rates below the 0.1 ㎏/h could be measured with reasonable uncertainties. To the authors' knowledge, these techniques provide a unique experimental apparatus for measuring the condensation heat transfer coefficients inside the sub-millimeter hydraulic diameter single channels.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2) (Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2))

  • 박일용;김정수;배대석
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

와류발생기의 가진 주파수에 의한 열전달 향상 (Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator)

  • 방창훈;김정수;예용택
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF