• Title/Summary/Keyword: Low-flow channel

Search Result 351, Processing Time 0.022 seconds

Design of a Dual Mode Baseband Filter Using the Current-Mode Integrator (전류모드 적분기를 이용한 듀얼 모드 기저대역 필터 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Cho, Seong-Ik;Choi, Seok-Woo;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.260-264
    • /
    • 2008
  • In this paper, a dual mode baseband analog channel selection filter is described which is designed for the Bluetooth and WCDMA wireless communications. Using the presented current-mode integrator, a dual mode channel selection filter is designed. To verify the current-mode integrator circuit, Hspice simulation using 1.8V Hynix $0.18{\mu}m$ standard CMOS technology was performed and achieved $50.0{\sim}4.3dB$ gain, $2.29{\sim}10.3MHz$ unity gain frequency. The described third-order dual mode analog channel selection filter is composed of the current-mode integrator, and used SFG(Signal Flow Graph) method. The simulated results show 0.51, 2.40MHz cutoff frequency which is suitable for the Bluetooth and WCDMA baseband block each.

Analysis of Physical Disturbance according to Optimizing of Low-Flow Channel Width for Stable Channel Design and Physical Habitat Improvement (안정하도 설계와 어류서식처 개선을 위한 저수로 폭의 최적화에 따른 물리적 교란 분석)

  • Choi, Seung Je;Lee, Woong Hee;Choi, Heung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.290-290
    • /
    • 2017
  • 본 연구는 안정하도 설계를 위해 대상구간으로 원주천 16 km, 20개 횡단면에 대하여 SCAD(Stable Channel Analysis Design)를 이용한 안정하폭 평가를 실시하였다. 안정하폭은 하폭이 증가와 감소로 20%의 허용범위를 적용하였다. 안정하폭의 설계와 물리서식처의 개선을 위해 저수로 폭의 최적 설계를 제시하기 위해 유전자알고리즘을 이용하였다. 물리서식처 개선은 원주천의 하천환경조사와 어류의 군집특성을 이용하여 수중생태계를 대표 할 수 있는 복원 목표어종으로 참갈겨니를 선택하였다. 참갈겨니의 서식적합지수 (HSI, Habitat Suitability Index)를 사용한 서식 적합도 분석은 River2D 모형을 이용하였다. 그에 따라 안정하도 설계와 물리서식처의 개선을 위한 각 단면의 최적 저수로 폭을 제시하였다. 개선된 하천구조에 대한 물리적 교란개선 평가를 실시하였다. 대산구간을 40개 구간으로 분할하여 각 구간의 물리적 교란개선 평가를 수행하여 안정하도 설계와 물리서식처 개선을 위한 하천구조의 개선에 따른 물리적 교란 양상을 평가 분석하였다.

  • PDF

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

The influence of flow rate and temperature on the quenching effect of cooling water (냉각수의 유동속도와 온도가 담금효과에 미치는 영향)

  • 민수홍;김상열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.24-39
    • /
    • 1982
  • It has already been known that quenching effect is influenced greatly by stirring and changing coolant's temperature on quenching. But according to the past investigations its effect has not been taken into consideration quantitatively in the cooling process. The purpose of this study is that the influence of flow rate and temperature on the quenching effect of cooling water as quenching medium is quantitatively examined by using the open channel. The stream of water in this study is turbulent flow. The temperature of the specimen made of pure copper is measured by CA thermocouple in the vicinity of the surface and recorded by an automatic recorder during the quenching process in city water. The results obtained are as follows; 1. The quenching effect of cooling water generally increases with Reynolds Number(characteristic length; specimen diameter)as shown in the experimental formula; but at the realm of Reynolds Number from 1.2 * 10$^{4}$ to 9.2 * 10$^{4}$, the increasing rate of quenching effect shows little increase. 2. The increasing rate of quenching effect was increased under the flow rate of 221 cm/sec. On the other hand, it was decreased below this flow rate. 3. The quenching effect was influenced by the water temperature and the flow rate. But it was rather dependent upon the former than the latter. 4. Although the quenching effect appeared loosely in the water temperature of 50.deg. C, it was shown that the quenching effect increased in the low flow rate of 31 cm/sec. comparing with the still water. 5. It is desirable to design the quenching system to be over 1.2 * 10$^{4}$ in Reynolds Number or over, 3000$cm^{-1}$ / in V/v in order to increase the quenching effect of the system using open channel.annel.

  • PDF

Experimental Study of Vegetated Flows in the Stream-scale Natural Channel (자연형 수로 내 식생흐름 분석을 위한 실험적 연구)

  • Ryu, Yong-Uk;Kim, Jihyun;Ji, Un;Kang, Joongu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.587-594
    • /
    • 2019
  • This study experimentally investigated the effects of high and low densities of vegetation patches on the flow characteristics in a stream-scale outdoor experimental channel with rooted willows. Stream-scale experiments on vegetated flows were carried out for an emergent condition of vegetation. Vegetation patches were arranged by alternate bar formation and the flows in vegetated and non-vegetated sections were compared. Three-dimensional flow structure was measured by ADV (Acoustic Doppler Velocimeter) and the vertical distributions of longitudinal velocity were mainly analyzed from the measurements at various points. Flow velocities show different patterns depending on the density of vegetation patches. The difference in flow velocity between in the vegetated and non-vegetated sections appear to large in the dense patches and the flow becomes complicated at the downstream edge of the patch. Despite the upstream flow disturbed by the first patch, the flows over the second patch show the similar pattern.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

Restoration Modeling Analysis for Abandoned Channels of the Mangyeong River

  • Kim, Jae-Hoon;Julien, Pierre Y.;Ji, Un;Kang, Joon-Gu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.555-564
    • /
    • 2011
  • This study examines the potential restoration of abandoned channels of the Mangyeong River in South Korea. To analyze the morphological changes and equilibrium conditions, a flow duration analysis was performed to obtain the discharge of 255 m3/s with a recurrence interval of 1.5 year. It is a gravel-bed stream with a median bed diameter of 36 mm. The reach-averaged results using HEC-RAS showed that the top width is 244 m, the mean flow depth is 1.11 m, the width/depth ratio is very high at 277, the channel velocity is 1.18 m/s, and the Froude number is also high at 0.42. The hydraulic parameters vary in the vicinity of the three sills which control the bed elevation. The total sediment load is 6,500 tons per day and the equivalent sediment concentration is 240 mg/l. The Engelund-Hansen method was closer to the field measurements than any other method. The bed material coarser than 33 mm will not move. The methods of Julien-Wargadalam and Lacey gave an equilibrium channel width of 83 m and 77 m respectively, which demonstrates that the Mangyeong River is currently very wide and shallow. The planform geometry for the Mangyeong River is definitely straight with a sinuosity as low as 1.03. The thalweg and mean bed elevation profiles were analyzed using field measurements in 1976, 1993 and 2009. The measured profiles indicated that the channel has degraded about 2 m since 1976. The coarse gravel material and large width-depth ratio increase the stability of the bed material in this reach.

A development of an assessment system for stream physical environments in Korea (하천의 물리 환경 평가체계의 구축)

  • Jung, Hea-Reyn;Kim, Ki-Heung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.713-727
    • /
    • 2018
  • This study is to develop an assessment system for stream physical environments by considering stream characteristics. Comprehensively, the descriptions of and steam classification, assessing reach selection, contents of assessment categories and indexes are summarized. Since the physical structure of stream is results of reaction by stream power, streams were classified into three types (as high gradient stream, mid gradient stream and low gradient stream) according to the slope of channel, the grain size of bed material and the characteristics of channel topography. The scale of assessment reach was selected based on 10 or 25 times of channel width according to typical characteristics such as interval of step or riffle and sinuosity in each stream type. The assessment indexes were organized into common indicators such as channel stability, flow status, cross-section shape, bank stability, channel alteration and stream crossing structure, and characteristic indicators by stream type such as effective habitats, bed embeddedness, diversity of flow and frequency of step or riffle. To evaluate the applicability, the assessment system was applied to 9 streams and the results were analyzed and presented.