• Title/Summary/Keyword: Low-flow

Search Result 6,290, Processing Time 0.033 seconds

A Study on the UPFC Dynamic Simulation Algorithm for Low Frequency Oscillation Studies (저주파 진동 해석을 위한 UPFC의 동적 시뮬레이션 알고리즘에 관한 연구)

  • Son, Kwang-Myoung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.502-508
    • /
    • 2000
  • This paper presents a dynamic simulation algorithm for studying the effect of United Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The proposed algorithm is a Newton-type one and uses current injection type UPFC model, which gives a fast convergence characteristics. The algorithm is applied to studying inter-area power oscillation damping enhancement of a sample two-area power system both in time domain and frequency domain. The case study results show that the proposed algorithm is very efficient and UPFC is very effective and robust against operating point change.

  • PDF

Performance Variations of Vaned Diffusers with Solidity and Exit Vane Angle (베인 디퓨저의 솔리디티와 출구 유동각에 따른 성능변화)

  • Cho, S.K.;Kang, S.H.;Cha, B.J.;Lee, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.422-427
    • /
    • 2000
  • The design of low-solidity vaned diffusers and the effect on the performance of a turbocharger compressor is discussed. The effect of vane number and turning angle was investigated while maintaining a basic design with a leading edge angle of $70^{\circ}$, leading and trailing edge radius ratios of 1.1 and 1.3. All results are compared with those obtained with the standard vaneless diffuser configuration and it was shown that all designs increased and shifted the pressure ratio to reduced flowrates. Despite the low-solidity configuration none of the vane designs provided a broad operating range, and the vane leading edge angle was not main factor that system went into the surge condition. The diffuser of higher trailing edge angle improved the flow range for the compressor to operate at lower flow region.

  • PDF

A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발)

  • 이광훈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

A Reynolds Stress Model for Low-Reynolds-Number Turbulence (저레이놀즈수 난류에 대한 레이놀즈 응력모델)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1541-1546
    • /
    • 1993
  • To extend the widely used Gibson and Launder's second order closure model to the low-Reynolds-number region near a wall, modifications have been made for velocity pressure-gradient interaction and dissipation terms in the stress equations, and also for the dissipation rate equation. From the computation of fully developed plane channel flow, it is found that the results with present model agree well with the data of direct numerical simulation in the predictions of stress components. And, the computed mean velocity profile coincides with the universal velocity law.

Numerical Modeling of Turbulent Swirling Premixed Lifted Flames (선회유동을 가지는 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

An Experimental Study for the Structure of Conical Vortex at the Low-Rise Building Roof by using a PIV Technique (PIV기법을 이용한 저층 건물 지붕에서 발생되는 원추형 와의 구조에 대한 실험적 연구)

  • Ji, Ho-Seong;Jeong, Eun-Ho;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.667-672
    • /
    • 2000
  • The Characteristics of the conical vortices on the roof surface of a low-rise building has been investigated by using a PIV(Particle Image Velocimerty) technique. The scaled model of TTU building with 1:92 scaling ratio was used. The Reynolds number based on the free stream velocity and the length of the model was $1.96{\times}10^5$. When the angle of attack for the building model is $45^{\circ}$, the conical vortices are occurred symmetrically and the center of vortices are changed with respect to the angle of the approaching flow. The rotating direction of the conical vortices found to be counter-rotating. The secondary vortex motions are investigated using the instantaneous flow field data.

  • PDF

The Study on Sizing of the Pressure Relief Valve for Overpressure Protection of a Reactor Pressure Vessel in Low Temperature Condition (저온 상태의 원자로 압력용기의 과압방지를 위한 압력방출밸브 용량 결정에 관한 연구)

  • Lee, Jun;Kim, Yoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • The purpose of this study is to present a methodology to estimate the capacity of the pressure relief valve which prevents overpressure of the pressure vessel in a cold state. In this methodology, the transient behavior of the flow rate through the pressure relief valve and the pressure inside the pressure vessel are considered. The result of this study shows the followings; The more the relief valve capacity is considered in excess, the more the initial relief flow rate and the initial pressure inside the pressure vessel are high and low respectively. When the relief valve capacity is determined properly, the pressure inside the pressure vessel maintains almost the same value, so the ASME code requirement will be met.

  • PDF

A Study on the Relief of Shell Wall Thinning around the Extraction Nozzle of Low Pressure Feedwater Heater (저압 급수가열기 추기노즐 주변 동체의 감육 완화에 관한 연구)

  • Seo, Hyuk-Ki;Park, Sang-Hun;Kim, Hyung-Jun;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2631-2636
    • /
    • 2008
  • The most components and piping of the secondary side of domestic nuclear power plants were manufactured carbon-steel and low-alloy steel. Flow accelerated corrosion leads to wall thinning (metal loss) of carbon steel components and piping exposed to the flowing water or wet steam of high temperature, pressure, and velocity. The feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which increases as operating time progress. Several nuclear power plants in Korea have also experienced wall thinning damage in the shell wall around the impingement baffle. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the experimental results based on down-scaled experimental facility. The experiments were performed based on several types of impingement baffle plates which are installed in low pressure feedwater heater.

  • PDF

Development of Quartz Crystal Microbalance-Based Immunosensor for the Determination of Low-Density Lipoprotein (Quartz Crystal Microbalance 시스템을 이용한 저밀도 지질단백질측정용 면역센서의 개발)

  • 김상현;윤현철;감학성
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.337-342
    • /
    • 1998
  • Immunosensor for the determination of LDL(Low-Density Lipoprotein), a good indicator for the diagnosis of atherosclerosis and hypercholesterolemia, was developed by using quartz crystal microbalance(QCM). The immunosensor consists of flow-through cell, oscillating circuit, oscilloscope, and frequency counter. FIA(Flow Injection Analysis) was applied to the QCM system for the measurement of LDL in liquid phase. Antibody showing binding affinity against LDL was immobilized on the gold electrode of a quartz crystal by covalent coupling via polyethylenimine / glutaredehyde. LDL was injected and bound to the antibody immobilized on the QCM immunosensor. The response of the immunosensor (F0 - F1) was found to be proportional to the LDL concentration from 200 $\mu\textrm{g}$/ml to 800 $\mu\textrm{g}$/ml. Operational conditions for the operation of immunosensor were also investigated in terms of sensitivity and non-specific binding.

  • PDF