• Title/Summary/Keyword: Low-flow

검색결과 6,290건 처리시간 0.052초

Effects of the partially movable control fin with end plate of underwater vehicle

  • Jung, Chul-Min;Paik, Bu-Geun;Park, Warn-Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.55-65
    • /
    • 2017
  • Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

원형방풍팬스 후면에 있는 저층건물의 풍압특성 (The Characteristic of Wind Pressure of Low-rise Building Located Behind a Circle Wind Fence)

  • 전종길;유장열;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.102-109
    • /
    • 2006
  • The effects of wind fence on the pressure characteristics around low-rise building model were investigated experimentally. Flow characteristics of turbulences behind wind fence were measured using hot-wire anemometer. The wind fence characterize by varying the porosity of 0 %, 40 % and the distances from the wind fence from 1 H to 6 H with maintaining the uniform flow velocity of 6 m/s. We investigated the overall characterization of the low-rise building by measuring pressure seventy four on model. The effects of porosity fences varied with the porosity of the fence and measurement locations(1H-6H). The 0% porosity proved to be effective for the protection area of 4H to 6H, but the 40% porosity proved to be effective for the protection area of 1H to 6H. The low-rise building of front face was found to be best wind fence for decreasing the mean, maximum and minimum pressure fluctuation.

  • PDF

Frequency Effects of Upstream Wake and Blade Interaction on the Unsteady Boundary Layer Flow

  • Kang, Dong-Jin;Bae, Sang-Su
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1303-1313
    • /
    • 2002
  • Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Wavier-Stokes code. The Wavier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when the reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake strips inside the viscous sublayer as well as the buffer layer.

실내.외 공기 중 부유먼지 측정방법 상호간의 비교평가 - 중량법을 대상으로 (Comparative Evaluation of Gravimetric Measurement Methods for Suspended Particles in Indoor and Outdoor Air)

  • 백성옥;박지혜;서영교
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.285-295
    • /
    • 2002
  • In this study, several types of gravimetric methods (such as high, medium, low, and ultra low volume sampling methods) were applied to determine suspended particulate matter concentrations in both ambient and indoor environments. Comparative evaluations were undertaken with SPM data obtained using a variety of samplers (TSP, PM10, and PM4.0) at different sampling flow rates. Correlation coefficients between TSP and PM10 concentrations measured at different flow rates fell in the range of 0.73∼0.94 (n=40). In addition, correlation coefficients for PM concentrations measured by different TSP samplers were in the range of 0.90∼0.95 (n=36 or n=38), while 0.77∼0.91 (n=38) for PM10 samplers. Correlation analysis was also conducted on indoor monitoring data that were measured using ultra-low-volume samplers at both different or identical flow rates. The correlation coefficients were in the range of 0.98∼0.99 (n=38) between TSP and TSP and 0.92∼0.94 (n=38) between TSP and PM10. The mean ratio for high volume PM10 to TSP concentration that was monitored at identical flow rates in the ambient air appeared to be 0.72. The mean ratios of PM10 to TSP and PM4.0 to TSP observed with identical flow rates at indoor environments were 0.47 and 0.40. The results of this study may provide empirical information concerning the compatability of aerosol data obtained by gravimetric sampling methods at different flow rates.

강릉 남대천 수계의 비소(As) 농도 분포 및 거동특성 연구 (Level and Fate of Arsenic(As) in the Namdae Stream)

  • 윤이용;김경태
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.149-157
    • /
    • 2000
  • 깅릉 남대천 수계에서 처음으로 용존 비소(As)의 분포와 거동에 관한 연구가 수행되었다. 풍수기인 1997년 8월 28일(최종 방류량; $1.97{\times}10^6$ 톤/일)과 갈수기인 동년 11월 21일(최종 방류량; $0.13{\times}10^6$ 톤/0일). 두 차례에 걸쳐 조사된 As의 농도 분포는 같은 시기에 조사된 다른 중금속들과 다소 차이를 보인다. 도암댐 보다 오봉댐 유출수의 농도가 미소하게 높았고, 갈수기인 11월 하류부의 농도 급증현상도 나타나지 않았을 뿐 아니라 풍수기인 8월 하류부의 농도보다도 낮았다. 그리고 두 조사기간사이의 농도차가 미비하며, 원시적인 강들과 세계평균치에 비해서도 비교적 낮은 농도로서 남대천 수계에서는 As의 인위적인 오염원이 없고, 자연적인 배경농도(background level) 수준임을 알 수 있다. 하구에서 담수와 해수가 혼합되는 과정에서는 외부 유입이나 제거 기작없이 염분과 함께 직선적으로 증가하는 보존적인 분포를 보이며, 남대천을 통하여 동해로 유출되는 As의 양은 연간 65.12kg 정도이다.

  • PDF

2차원저천단구조물(LCS)의 주변에서 파동장의 변동특성 (Variation Characteristic of Wave Field around 2-Dimensional Low-Crested-Breakwaters)

  • 이준형;정욱진;배주현;이광호;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제31권5호
    • /
    • pp.294-304
    • /
    • 2019
  • 본 연구에서는 olaFlow 모델에 의한 혼상류수치해석법을 적용하여 2차원저천단구조물에 의한 파동장의 변동특성(전달율, 파고, 평균유속 및 평균난류운동에너지)을 수치적으로 평가한다. 또한, 기존의 수리실험결과와 비교하여 수치해석결과의 타당성을 검증한다. 도출된 수치해석결과 중에 평균유속은 구조물 항외측의 전면에서 반시계방향의 순환류셀을 형성하고, 항내측에서 항내로 향하는 강한 일방향흐름을 나타내며, 이들은 월파 등의 요소와 밀접한 관계를 가진다는 것 등을 알 수 있었다.

Three-Dimensional Flow Visualization for the Steady and Pulsatile Flows in a Branching Model using the High-Resolution PIV System

  • Suh, Sang-Ho;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제2권2호
    • /
    • pp.27-32
    • /
    • 2004
  • The objective of the present study is to visualize the steady and pulsatile flow fields in a branching model by using a high-resolution PIV system. A bifurcated flow system was built for the experiments in the steady and pulsatile flows. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. CCD cameras($1K{\times}1K$(high resolution camera) and $640{\times}480$(low resolution camera)) captured two consecutive particle images at once for the image processing of several cross sections on the flow system. The range validation method and the area interpolation method were used to obtain the final velocity vectors with high accuracy. The results of the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex of the branch flow in the bifurcated model. The results also indicated that the particle velocities at the inner wall moved faster than the velocities at the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. Even though the PIV images from the high resolution camera were closer to the simulation results than the images from the low resolution camera at some locations, both results of the PIV experiments from the two cameras generally agreed quite well with the results from the computer simulations. Therefore, instead of using the expensive stereoscopic PIV or 3D PIV system, the three-dimensional flow fields in a bifurcated model could be easily and exactly investigated by this study.

  • PDF

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

방류수 유량계(전자기유량계, 파샬플룸)의 특성평가 연구 (A Study on Comparison of the Characteristic Test of Discharge Water Flowmeters (Electromagnetic Flowmeter, Parshall Flume))

  • 안양기;김지영;김금희;장희수;정정필;최종우
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.57-62
    • /
    • 2015
  • The test of comparing liquid flow calibration system (approved by KOLAS) for accuracy and structure change test was performed in the test bed in order to evaluate the typical characteristics of the electromagnetic flow meters and parshall flume that are generally used in the water discharging facilities. The results of the accuracy comparing test with liquid flow calibration system showed the error of less than 2%. Pharshall plume got error up to -8.3% (low flow) from the flow rate test, but less than 4% from the accumulated flow test because of offset error at high flow rate and low flow rate. Evaluation of structual change test was tested with only parshall flume using structure and it consisted of installation angle (parshall flume and level sensor) and position change. Installation angle, water level sensor angle and position changing test for parshall flume had errors of 3.1%~-9.2%, 0.4%~-5.6% and 0.2%~1.3% respectively. Especially, the error showed the largest increase when the water level sensor measured the point of decreased flow by the structure change. Therefore, error factors (change of straight pipe length, installation of obstacle or effect of foreign substances on water level sensor) that can often occur in the field should be derived and the research for optimized installation method should be carried out continuously.

고레이놀즈수 유동 장치에서 Y형 이음의 유동 특성 (A FLOW CHARACTERISTICS FOR Y-CONNECTION IN HIGH-REYNOLDS-NUMBER FLOW SYSTEM)

  • 박정근;박종호;박용철
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2013
  • In nuclear power plant, the reactor cooling system has maintained high-Reynolds-number flow above 1E+07 to cool a heat generated by the reactor. To minimize uncertainty for flow calibration, it is necessary to simulate the high Reynolds' number flow. Y-connection is selected to connect four (4) parallel high flow circulation pumps for maintaining the high flow rate. This paper describes the characteristics for Y-connection by computer flow simulation. It was confirmed through the results that the pressure loss of the Y-connection was lower than that of T-connection. Also as the connection angle of Y-connection was small, as the pressure loss was low.