• Title/Summary/Keyword: Low-density concentration

Search Result 714, Processing Time 0.037 seconds

A Study on the Performance Improvement of GaAs Metamorphic HEMTs Using ICPCVD SiNx Passivation (ICPCVD 질화막 Passivation을 이용한 GaAs Metamorphic HEMT 소자의 성능개선에 관한 연구)

  • Kim, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.483-490
    • /
    • 2009
  • In this paper, a novel low-damage silicon nitride passivation for 100nm InAlAs/InGaAs MHEMTs has been developed using remote ICPCVD. The silicon nitride deposited by ICPCVD showed higher quality, higher density, and lower hydrogen concentration than those of silicon nitride deposited by PECVD. In particular, we successfully minimized the plasma damage by separating the silicon nitride deposition region remotely from ICP generation region, typically with distance of 34cm. The silicon nitride passivation with remote ICPCVD has been successfully demonstrated on GaAs MHEMTs with minimized damage. The passivated devices showed considerable improvement in DC characteristics and also exhibited excellent RF characteristics($f_T$of 200GHz).The devices with remote ICPCVD passivation of 50nm silicon nitride exhibited 22% improvement(535mS/mm to 654mS/mm) of a maximum extrinsic transconductance($g_{m.max}$) and 20% improvement(551mA/mm to 662mA/mm) of a maximum saturation drain current ($I_{DS.max}$) compared to those of unpassivated ones, respectively. The results achieved in this work demonstrate that remote ICPCVD is a suitable candidate for the next-generation MHEMT passivation technique.

Measurements of ${CO_3}^{2-}$ ion concentration using porous silicon diaphragm coated with LDPE film (LDPE 필름으로 코팅된 다공질 실리콘 다이어프램을 이용한 탄산칼륨 용역내의 ${CO_3}^{2-}$ 이온농도 측정)

  • Yang, Jung-Hoon;Kang, Chul-Goo;Jin, Joon-Hyung;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1908-1910
    • /
    • 2001
  • 본 논문은 마이크로머시닝 기술을 이용하여 lift-off 공정으로 패턴닝 한 후 TMAH (Tetramethylammonium Hydroxide) 용액으로 $5{\sim}100{\mu}m$ 두께의 실리콘 다이어프램을 제작하였다. Pt/Ti 박막을 HF 전해질의 mask 물질로 사용하여 HF 용액 내에서 전기화학적 방법으로 정전압을 인가, 다이어프램 영역에 다공질 실리콘을 성장시켜 관통하였다. 140$^{\circ}C$의 질소 분위기에서 $10{\sim}15{\mu}m$두께의 LDPE(Low Density Poly Ethylene) 필름을 물리적으로 다이어프램 영역에 코팅하고 $K_2CO_3$ 용액내에서 ${CO_3}^{2-}$ 이온의 barrier에 의한 전류의 감소를 전기화학적인 분석방법에 의하여 측정하였다. 일정 전압하에서 이온 농도에 기인하는 다공질 실리콘과 LDPE 표면에서 Barrier의 두께에 따른 저항의 증가를 전극으로 감지하여 농도-전류의 특성을 측정하고 이것을 기준으로 하여 미지농도의 $K_2CO_3$ 용액내의 ${CO_3}^{2-}$ 이온 농도를 측정하였다.

  • PDF

A Study of Functionality and Stability of LDPE-Nano TiO2 Composite Film (LDPE-나노 TiO2 복합 필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • In this work, the effects of nano $TiO_2$ on functionality and stability of low density polyethylene (LDPE) composite films were investigated for food packaging application. LDPE-nano $TiO_2$ composite films were prepared with various $TiO_2$ contents (0, 0.5, 1.0, 3.0 and 5.0wt%) by melt-extrusion and their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. Ultraviolet (UV) light barrier property of as-prepared LDPE-nano $TiO_2$ composite films was also studied and the presence of nano $TiO_2$ resulted in significant improvement of UV light barrier compared to the pure LDPE film. To evaluate influence of nano $TiO_2$ on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano $TiO_2$ composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-vis spectroscopy. As a result, except optical property of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano $TiO_2$.

Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties

  • Ranga, Rao;Sarada, A.R.;Baskaran, V.;Ravishankar, G.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1333-1341
    • /
    • 2009
  • Haematococcus pluvial is, a green alga, accumulates astaxanthin (3,3'-dihydroxy-$\beta$,$\beta$'-carotene-4,4'-dione) upto 2-3% on a dry weight basis. In the present study, identification of carotenoids from Haematococcus cyst cell extract by HPLC and LC-MS (APCI) and their antioxidant properties were evaluated in in vitro model systems. The extract exhibited 89% and 78% antioxidant activities in the $\beta$-carotene linoleate model and the hydroxyl radical scavenging model, at 9 ppm of total carotenoid, respectively. The extract also showed 80%, 85%, and 79% antioxidant activities against lipid peroxidation in the kidney, brain, and liver of rats. Low-density lipoprotein oxidation induced by $Cu^{2+}$ ions was also protected (45%, 64%, and 75%) by the extract in a dose-dependent manner with different carotenoid levels. Thiobarbituric acid reactive substances concentration in the blood, liver, and kidney of rats were also significantly (p<0.005) decreased in H. pluvialis-treated rats. The potent antioxidant activity is attributable to various carotenoids present in the extract.

OXYGEN CONCENTRATION IN THE CATHODE CHANNEL OF PEM FUEL CELL USING GAS CHROMATOGRAPH

  • Ha, T.H.;Kim, H.S.;Min, K.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.119-126
    • /
    • 2007
  • Because of the low temperature operation, proton exchange membrane (PEM) fuel cell has a water phase transition. Therefore, water management is an important operation issue in a PEM fuel cell because the liquid water in the fuel cell causes electrode flooding that can lower the cell performance under high current density conditions. In this study, in order to understand the reactant distributions in the cathode channels of the PEM fuel cell, an experimental technique that can measure the species concentrations of reactant gases by using gas chromatograph (GC) is applied for an operating PEM fuel cell. The oxygen distribution along the cathode flow channels of PEM fuel cell is mainly investigated with various operating conditions. Also, the relations between cathode flooding and oxygen concentrations and oxygen consumption pattern along the cathode channel configurations of the unit cell adopted for this study are discussed using GC measurement and visualization experiment of cathode flooding. It is found that the amount of oxygen consumption is very sensitive to various operating conditions of the fuel cell and was much affected by the flooding occurrence in cathode channels.

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film (LDPE-나노 ZnO 복합필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this work, nano ZnO was introduced into low density poly ethylene (LDPE) composites films with various contents (0, 0.5, 1.0, 3.0 and 5.0 wt%) by melt-extrusion. Their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. XRD patterns and FTIR peaks intensity were increased in proportion to the ZnO contents. SEM images showed well dispersed nano ZnO in LDPE composite films. Antimicrobial functionality of LDPE-nano ZnO composite films was also studied and the presence of nano ZnO resulted in significant improvement of antimicrobial functionality compared to the pure LDPE film. To evaluate influence of nano ZnO on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano ZnO composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-Vis spectroscopy. As a result, except optical and mechanical properties of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano ZnO and tensile strength was also improved at 0.5wt% ZnO content.

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

The Physical Properties and Efficiencies of Cu(In,Ga)Se2 Thin Films Depending on the Mo:Na Thickness (Mo:Na 두께에 따른 Cu(In,Ga)Se2 박막의 물성과 효율변화)

  • Shin, Younhak;Kim, Myunghan
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2014
  • To realize high-performance thin film solar cells, we prepared CIGS by the co-evaporation technique on both sodalime and Corning glass substrates. The structural and efficient properties were investigated by varying the thickness of the Mo:Na layer, where the total thickness of the back contact was fixed at 1${\mu}m$. As a result, when the Mo:Na thickness was 300 nm on soda-lime glass, the measured Na content was 0.28 %, the surface morphology was a plate-like compact structure, and the crystallinity by XRD showed a strong peak of (112) preferential orientation together with relatively intense (220) and (204) peaks as the secondary phases influenced crystal formation. In addition, the substrates on soda-lime glass effected the lowest surface roughness of 2.76 nm and the highest carrier density and short circuit current. Through the optimization of the Mo:Na layer, a solar conversion efficiency of 11.34% was achieved. When using the Corning glass, a rather low conversion efficiency of 9.59% was obtained. To determine the effects of the concentration of sodium and in order to develop a highefficiency solar cells, a very small amount of sodium was added to the soda lime glass substrate.

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.