DOI QR코드

DOI QR Code

A Study of Functionality and Stability of LDPE-Nano TiO2 Composite Film

LDPE-나노 TiO2 복합 필름의 기능성 및 재질안정성 평가

  • 이우석 (연세대학교 패키징학과) ;
  • 고성혁 (연세대학교 패키징학과)
  • Received : 2017.05.08
  • Accepted : 2017.07.24
  • Published : 2017.08.31

Abstract

In this work, the effects of nano $TiO_2$ on functionality and stability of low density polyethylene (LDPE) composite films were investigated for food packaging application. LDPE-nano $TiO_2$ composite films were prepared with various $TiO_2$ contents (0, 0.5, 1.0, 3.0 and 5.0wt%) by melt-extrusion and their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. Ultraviolet (UV) light barrier property of as-prepared LDPE-nano $TiO_2$ composite films was also studied and the presence of nano $TiO_2$ resulted in significant improvement of UV light barrier compared to the pure LDPE film. To evaluate influence of nano $TiO_2$ on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano $TiO_2$ composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-vis spectroscopy. As a result, except optical property of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano $TiO_2$.

Keywords

References

  1. Research, P. M. 2014. Persistence Market Research: Global Nano-enabled Packaging Market to Reach US$15.0 Billion by 2020; http://www.businesswire.com/news/home/20150109 005497/en/Persistence-Market-Research-Global-Nano-enabled-Packaging-Market
  2. Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid Interface Science 363: 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  3. Paralikar, S. A., Simonsen, J. and Lombardi, J. 2008. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science 320: 248-258. https://doi.org/10.1016/j.memsci.2008.04.009
  4. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants 25: 241-258. https://doi.org/10.1080/02652030701744538
  5. Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T. and Campbell, K. 2014. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science & Technology 40: 226-241. https://doi.org/10.1016/j.tifs.2014.09.007
  6. Silvestre, C., Duraccio, D., and Cimmino, S. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science 36: 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003
  7. Mohanty, A. K., Misra, M. and Nalwa, H. S. 2009. Packaging nanotechnology. American Scientific Publishers 2009.
  8. Rubilar, O., Diez, M., Tortella, G., Briceno, G., Marcato, P. and Duran, N. 2014. New strategies and challenges for nanobiotechnology in agriculture. Journal of Biobased Materials and Bioenergy 8: 1-12. https://doi.org/10.1166/jbmb.2014.1407
  9. Kim, S. W. and Cha, S. H. 2014. Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymerbased nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science 131.
  10. Cho, T. W. and Kim, S. W. 2011. Morphologies and properties of nanocomposite films based on a biodegradable poly (ester) urethane elastomer. Journal of Applied Polymer Science 121: 1622-1630. https://doi.org/10.1002/app.33766
  11. Sarsar, V., Selwal, K. K., and Selwal, M. K. 2014. Nanosilver: potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology 13.
  12. Espitia, P. J. P., Soares, N. d. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S. and Medeiros, E. A. A. 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology 5: 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
  13. Macwan, D., Dave, P. N., and Chaturvedi, S. 2011. A review on nano-$TiO_2$ sol-gel type syntheses and its applications. Journal of Materials Science 46: 3669-3686. https://doi.org/10.1007/s10853-011-5378-y
  14. Zhang, W., Zhu, Z., and Cheng, C. Y. 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108: 177-188. https://doi.org/10.1016/j.hydromet.2011.04.005
  15. Peters, R. J., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P., Marvin, H. J., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., and Bouwmeester, H. 2014. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry 62: 6285-6293. https://doi.org/10.1021/jf5011885
  16. Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95: 69-96. https://doi.org/10.1021/cr00033a004
  17. Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R., and Talib, R. A. 2014. Antimicrobial activity of $TiO_2$ nanoparticle- coated film for potential food packaging applications. International Journal of Photoenergy 2014.
  18. Siddiquey, I. A., Ukaji, E., Furusawa, T., Sato, M., and Suzuki, N. 2007. The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of $TiO_2$. Materials Chemistry and Physics 105: 162-168. https://doi.org/10.1016/j.matchemphys.2007.04.017
  19. Guo, G., Shi, Q., Luo, Y., Fan, R., Zhou, L., Qian, Z., and Yu, J. 2014. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale Research Letters 9: 1-9. https://doi.org/10.1186/1556-276X-9-1
  20. Diaz-Visurraga, J., Melendrez, M., Garcia, A., Paulraj, M., and Cardenas, G. 2010. Semitransparent chitosan-$TiO_2$ nanotubes composite film for food package applications. Journal of Applied Polymer Science 116: 3503-3515.
  21. Sabzi, M., Mirabedini, S., Zohuriaan-Mehr, J., and Atai, M. 2009. Surface modification of $TiO_2$ nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings 65: 222-228. https://doi.org/10.1016/j.porgcoat.2008.11.006
  22. ASTM D6603. 2012. Standard Specification for Labeling of UV-Protective Textiles.
  23. ASTM D882. 2012. Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
  24. ASTM D1746. 2015. Standard Test Method for Transparency of Plastic Sheeting.
  25. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., and Miraki, R. 2013. Reducing water sensitivity of alginate bionanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules 54: 166-173. https://doi.org/10.1016/j.ijbiomac.2012.12.016
  26. De Rosa, C., Auriemma, F., Corradini, P., Tarallo, O., Dello Iacono, S., Ciaccia, E., and Resconi, L. 2006. Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. Journal of the American Chemical Society 128: 80-81. https://doi.org/10.1021/ja0572957
  27. You, T., Jiang, L., Han, K.-L., and Deng, W.-Q. 2013. Improving the performance of quantum dot-sensitized solar cells by using $TiO_2$ nanosheets with exposed highly reactive facets. Nanotechnology 24: 245401. https://doi.org/10.1088/0957-4484/24/24/245401
  28. Asghar, W., Qazi, I. A., Ilyas, H., Khan, A. A., Awan, M. A., and Aslam, M. R. 2011. Comparative solid phase photocatalytic degradation of polythene films with doped and undoped $TiO_2$ nanoparticles. Journal of Nanomaterials 2011: 12.
  29. Amalraj, A. and Pius, A. 2014. Photocatalytic Degradation of Alizarin Red S and Bismarck Brown R Using TiO.
  30. Seentrakoon, B., Junhasavasdikul, B., and Chavasiri, W. 2013. Enhanced UV-protection and antibacterial properties of natural rubber/rutile-$TiO_2$ nanocomposites. Polymer Degradation and stability 98: 566-578. https://doi.org/10.1016/j.polymdegradstab.2012.11.018
  31. Popov, A. P., Lademann, J. r., Priezzhev, A. V., and MyllylA, R. 2005. Effect of size of $TiO_2$ nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. Journal of Biomedical Optics 10: 064037-064037-9.
  32. Zhou, J., Wang, S., and Gunasekaran, S. 2009. Preparation and characterization of whey protein film incorporated with $TiO_2$ nanoparticles. Journal of Food Science 74: N50-N56. https://doi.org/10.1111/j.1750-3841.2009.01270.x
  33. Nguyen, V. G., Thai, H., Mai, D. H., Tran, H. T., and Vu, M. T. 2013. Effect of titanium dioxide on the properties of polyethylene/$TiO_2$ nanocomposites. Composites Part B: Engineering 45: 1192-1198. https://doi.org/10.1016/j.compositesb.2012.09.058
  34. Bikiaris, D. N., Papageorgiou, G. Z., Pavlidou, E., Vouroutzis, N., Palatzoglou, P., and Karayannidis, G. P. 2006. Preparation by melt mixing and characterization of isotactic polypropylene/$SiO_2$ nanocomposites containing untreated and surfacetreated nanoparticles. Journal of Applied Polymer Science 100: 2684-2696. https://doi.org/10.1002/app.22849
  35. Seo, J., Jeon, G., Jang, E. S., Bahadar Khan, S. and Han, H. 2011. Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science 122: 1101-1108. https://doi.org/10.1002/app.34248