• Title/Summary/Keyword: Low-cost solution

Search Result 666, Processing Time 0.03 seconds

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Cost-effective Power Module Package using Leadframe and Ceramic substrate

  • Jeon, O-S;Jeun, G-Y;Park, S-Y;Lee, K-H;Kim, B-G
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.9-25
    • /
    • 2001
  • Fairchild has been developing a new class IPM called SPM consisting of dramatic Packaging technology to achieve the lowest cost rind better performance for low power home appliances and industrial AC drive applications. The first Fairchild SPM development with IGBT 600V/15A for washing machine application started in 1999 and was completed successfully. Fairchild SPMs are going to be the best solution for low power inverter-driven AC drive system after 2001. The new SPM Packages like SPM ∥ and SPIM for the next generation IPM with the highest competitiveness (cost & performance) shall be continuouslly developed.

  • PDF

Simultaneous Transistor Sizing and Buffer Insertion for Low Power Optimization

  • Kim, Ju-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.28-35
    • /
    • 1997
  • A new approach concurrent transistor sizing and buffer insertion for low power optimization is proposed in this paper. The method considers the tradeoff between upsizing transistors and inserting buffers and chooses the solution with the lowest possible power and area cost. It operates by analyzing the feasible region of the cost-delay curves of the unbuffered and buffered circuits. As such the feasible region of circuits optimized by our method is extended to encompass the envelop of cost-delay curves which represent the union of the feasible regions of all buffered ad unbuffered versions of the circuit. The method is efficient and tunable in that optimality can be traded for compute time and as a result it can in theory near optimal results.

  • PDF

Design and Implementation of Low-Cost Articulate Manipulator for Academic Applications

  • Muhammad Asim Ali;Farhan Ali Shah
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • The objective of this work is to design a low cost yet fully functional 4-DOF articulate manipulator for educational applications. The design is based on general purpose, programmable smart servo motors namely the Dynamixel Ax-12. The mechanism for motion was developed by formulating the equations of kinematics and subsequent solutions for joint space variables. The trajectory of end-effector in joint variable space was determined by interpolation of a 3rd order polynomial. The solutions were verified through computer simulations and ultimately implemented on the hardware. Owing to the feedback from the built-in sensors, it is possible to correct the positioning error due to loading effects. The proposed solution offers an efficient and cost-effective platform to study the trajectory planning as well as dynamics of the manipulator.

Preparation of Silicon Oxide Thin Film using Hydrofluorosilicic Acid (규불화수소산을 이용한 실리콘 산화물 필름 제조에 관한 연구)

  • Park, Eun-Hui;Jeong, Heung-Ho;Im, Heon-Seong;Hong, Seong-Su;No, Jae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.414-418
    • /
    • 1999
  • Typical metal oxide thin films having optical and electrical properties are widely used as inorganic functional materials. Liquid phase deposition(LPD) method, a new low temperature process, has been developed for the several advantages of no vacuum system, low cost, high throughput, and low processing temperature(<$50^{\circ}C$). Silica powder was added to 40wt% hydrofluoro-silicic acid($H_2$SiF\ulcorner) to obtain an immersing solution of silica-saturated hydrofluorosilicic acid solution. Boric acid solution was continuously added in the range from 0 to 0.05M to prepare supersaturated hydrofluorosilicic acid solution. LPD $SiL_2$film was formed with the variation of added amount of $H_2$O. The SiO$_2$thin film could be prepared from hydrofluorosilicic acid by LPD method. The thickness of LPD $_SiO2$film was influenced by the boric acid concentration and added amount of $H_2$O. Silicon in thin film existed as SiF\ulcorner by Raman spectrum.

  • PDF

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Fabrication of Ti Doped ZnO Nanostructures by Atomic Layer Deposition and Block Copolymer Templates

  • Kwack, Won-Sub;Zhixin, Wan;Choi, Hyun-Jin;Jang, Seung-Il;Lee, Woo-Jae;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.452-452
    • /
    • 2013
  • ZnO is one of the most attractive transparent conductive oxide (TCO) films because of low toxicity, a wide band gap material and relatively low cost. However, the electrical conductivity of un-doped ZnO is too high to use it as TCO films in practical application. To improve electrical properties of undoped ZnO, transition metal (TM) doped ZnO films such as Al doped ZnO or Ti doped ZnO have been extensively studied. Here, we prepared Ti doped ZnO thin films by atomic layer deposition (ALD) for the application of TCO films. ALD was used to prepare Ti-doped ZnO thin films due to its inherent merits such as large area uniformity, precise composition control in multicomponent thin films, and digital thickness controllability. Also, we demonstrated that ALD method can be utilized for fabricating highly ordered freestanding nanostructures of Ti-doped ZnO thin films by combining with BCP templates, which can potentially used in the photovoltaic applications.

  • PDF

A Non-coherent UWB Direct Chaotic Ranging System for Precision Location and Positioning

  • Yang, Wan-Cheol;Lee, Sang-Yub;Lee, Kwang-Du;Kim, Ki-Hwan;Yang, Chang-Soo;Kim, Hak-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.311-315
    • /
    • 2006
  • Precision location and positioning of Asset within a network is an attractive feature with various applications, especially in indoor environments. Such a demand is met by the standard task group, IEEE 802.15.4a. Several methods, that is, pulse, chirp and chaotic communications have been proposed so far to satisfy the requirements of the standard. Among them, ultra wideband direct chaotic communications has advantageous features such as low hardware complexity, low cost, lower power consumption and flexible frequency band plan. In this paper, the feasibility of the ranging system using non-coherent chaotic transceiver is investigated by designing and implementing the system and the performance is proved by conducting location experiments in real indoor environments.

  • PDF

Effect of Boron on the Manufacturing Properties of Ti-2Al-9.2Mo-2Fe Alloy (Ti-2Al-9.2Mo-2Fe 합금의 후공정 특성에 미치는 보론의 영향)

  • Kim, Tae-Yong;Lim, Ka-Ram;Lee, Yong-Tai;Cho, Kyung-Mok;Lee, Dong-Geun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.