28 JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 8, 1997

Simultaneous Transistor Sizing and Buffer
Insertion for Low Power Optimization

Ju-Ho Kim

Abstract

A new approach of concurrent transistor sizing and buffer insertion for low power optimization is proposed in this paper. The method

considers the tradeoff between upsizing transistors and inserting buffers and chooses the solution with the lowest possible power and area

cost. It operates by analyzing the feasible region of the cost-delay curves of the unbuffered and buffered circuits. As such the feasible

region of circuits optimized by our method is extended to encompass the envelop of cost-delay curves which represém the union of the

feasible regions of all buffered and unbuffered versions of the circuit. The method is efficient and tunable in that optimality can be traded

for compute time and as a result it can in theory produce near optimal results.

I. Introduction

With the growing demand for portable electronic systems, low
power with high speed has become a major design constraint
along with area. Optimization for low power can be applied at
various stages of the design process from the architectural level to
the physical layout implementation of the circuit. Gate/transistor
sizing is one of the well-known methodologies for timing optimi-
zation at the netlist level. v

For a given circuit topology there is an cost-delay tradeoff
curve[l, 2] shown by the sizing curve in Figure 1. Each point on
the figure represents a particular power (size) and delay config-
uration of the circuit. The sized circuits above the curve are
suboptimal in that the same timing can be achieved at a lower
cost. The region below the curve is infeasible and no purely sized
circuit can have a delay and cost in this region. The sizing curve
in Figure 1 shows that when the delay is small, further improve-
ments in delay reduction come at a high cost increase.

The TILOS algorithm[1] is used to size transistors in a circuit
to produce a sized circuit near the optimal cost-delay curve. TILOS
begins by downsizing transistors to their minimum size. TILOS
then begin a series of iterations during which transistors are
selectively upsized to make the circuit meet timing. During this
process the circuit sweeps the cost-delay curve shown in Figure 1
(sizing curve) from right to left.

For a given delay requirement, through careful buffer insertion

Manuscript received September 15, 1997; accepted November 20, 1997.

The Author is with Department of Computer Science, Sogang University, Seoul, *

Korea.

it is possible to obtain a circuit with less overall cost(power) than
is achievable through sizing alone. Also, through buffer insertion
it is possible to improve circuit delay beyond what is possible
through sizing alone. Adding a buffer changes the topology of the
circuit resulting in the new cost-delay curve shown by the sizing
with buffer curve in Figure 1. Each possible different buffering of
the circuit gives rise to a different curve. By adding buffers so as
to be on the curve with the lowest cost for a given delay T; an
optimal sizing-buffering solution can be reached.

Unlike existing methods which perform buffer insertion and
sizing in distinct phases, our method concurrently performs buffer
insertion along with sizing[9]. Trade-offs between sizing and
buffering are directly considered by our method. During the TILOS
algorithm the sizing curve is swept from right to left. At some
point the delay 7, in Figure 1 is reached. At this point it is
beneficial to add a buffer in such a manner that optimization now
proceeds on the lower sizing with buffer curve. Our method

cost
G [c=c;
]
M -
i E sizing with buffer
E E sizing
H H

I; T, delay

Fig. 1. Cost vs. Delay Curve ; sizing and buffering (C;= cost
with buffer insertion at delay 7).

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997 29

detects this condition in the vicinity of delay 7; and adds a buffer
at an appropriate location. After buffer insertion at delay T, the
circuit follows the sizing with buffer curve which is lower than
that for sizing alone. As optimization progresses other buffers will
be added and the optimization sweeps an envelop of curves
representing the boundary of circuit speeds achievable by sizing
and buffer insertion.

Strong conditions that guarantee that the buffer with sizing
curve once below the sizing curve will remain below the sizing
curve can be derived but are beyond the scope of this paper.
The conditions under which buffers are inserted in our method
do not always satisfy these conditions entirely. In practice
however been empirically observed that once the buffer curve
dips below the sizing curve at T, the curves almost never
intersect for T¢ T;. Therefore when a buffer is inserted at T, it
is never removed.

Our buffer insertion method is split into two parts. The first
part is the buffer location generator which proposes a buffer
insertion location. The second part is an oracle-like mechanism
that returns the lowest possible cost value for that buffer location
at the current delay. The solution with the lowest power cost is
chosen. In theory, for the optimum result all possible buffer
insertion locations must be considered at each TILOS iteration.
Also in theory, to properly compute the lowest possible cost
value for a given buffer location TILOS must be run again on
the entire circuit. Because of the prohibitively large compute
times associated with each of these processes, we introduce
algorithms that solve these problems approximately and still
yields good results. To quickly determine a set of promising
buffer insertion locations, a branch-and-bound[8] like algorithm
which examines nodes on the current critical path is introduced.
The algorithm can be tuned to enumerate only the most
promising locations or a greater number of candidate solutions
allowing the user to trade off optimality with run time. Given a
buffer location, to quickly determine an accurate estimate for the
lowest cost for the current delay a Template Window
Acceleration Method is introduced. The window models the
behavior of the circuit in the vicinity of the buffer. Instead of
computing the new sizes for the entire circuit, sizing is performed
on this window. The cost for the entire circuit is then
extrapolated from these sizes. In theory, for optimal results, the

size of the window must encompass the entire circuit. In practice

good results are obtained using a window a few gates upstream
and a few gates downstream of the buffered node.

In section II, the fanout problem in sizing is described. The
overall algorithm of concurrent transistor sizing and buffer
insertion is described in section III followed by the Template
Window - Acceleration Method in section IV. The experimental
results are discussed in section V and finally the conclusion is in
section VL

(a)

Gy
g (b)

Fig. 2. Buffer Insertion (a) Type A (b) Type B

I1. Fanout Problem in Transistor Sizing

Because of the fanout problems{4, 5], a gate on the critical path
with large load capacitance may get excessively sized as the result
of transistor sizing. Since power dissipation is roughly propor-
tional to the capacitance of the circuit, large transistors consume
more power and may increase total chip area. Buffer insertion is
used to reduce the amount by which such transistors may need to
be sized in one of two ways. First the drive capability of a gate
may be increased by adding a buffer at its output. This is called
type A buffer insertion. Alternatively the drive requirement of the
gate can be reduced by off loading from the output node, the
fanout gates that are not on the critical path, This is called type
B buffer insertion. Both type A and type B buffer insertion are
described in more detail in this section.

1. Definitions and Terminologies

A transistor 7 has a width and a length. Only the transistor
width is changed during transistor sizing. The transistor area is
width x length” A path P ={fy,Go,/1,G1,...,Cm1, /) in the
circuit network is an alternating sequence of nodes and gates. If
outputs of the circuit are latched and a path P violates setup
constraint, the path P is defined as a violating path. The path
which never violates setup constraints under the given timing
constraint is also defined as a non-violating path.

Definition 1. The critical path is the most violating path.

Definition 2. The transistor sensitivity is the improvement in the
delay of the critical path per unit increase of area
(aT/osA).

2. Basic Concepts

Concurrent sizing and buffer insertion considers the trade-offs
between sizing and buffering. During each sizing iteration of the

30 : KIM : SIMULTANEOUS TRANSISTOR SIZING AND BUFFER INSERTION FOR LOW POWER OPTIMIZATION

. TILOS algorithm, a transistor in the critical path is selected to be
upsized depending on the transistor sensitivity. As shown in
Figure 1 the slope of the sizing curve becomes high when the
circuit delay approaches the minimum achievable delay 7 ;..
This large slope trajectory means low transistor sensitivity and
hence requires large size increase A W to achieve a given delay
improvement. For the fanout problem there are two cases for
which buffer insertion is advantageous. ‘The buffer insertion case
of Figure 2(a) is referred to as Type A buffer insertion. A buffer
is added before the fanout to increase the drive capability of the
fanout gate G,. Alternatively a buffer can be added to the non
violating path in Figure 2(b) to reduce ‘the load on gate Gjp thus

speeding up the violating path. This is referred to as Type B
buffer insertion.

(A) Type A Buffer Insertion

In Figure 2(a), the gate G, is'dn'ving large capacitance C; in
the node f; Assuming a simple RC delay model the initial delay
before buffer insertion is computed as T,=R,- C; After buffer
insertion the delay becomes 7,=R, -c+r-C; where r is the
resistance and ¢ is the cépacitance of the inserted buffer (for
explanatory simplicity treating the buffer as if it were a single
inverter gate). The speedup of the circuit due to buffer insertion
is then & T, = Ta\—Th. ,

Our ‘method requires an estimate of the cost (power) consumed
by the buffered circuit for the same delay as the unbuffered
circuit. In the buffered circuit gate G,4 can be downsized because
it is now driving a much smaller load. If the new downsized gate
G4 has resistance R’ the delay of the buffered circuit becomes
R -c+r-C. If S, is the sensitivity of gate G, then a rough
estimate for thé area gain is AA= aT,/S,—Ap where Ag is
the area of the buffer. The above method is used to quickly
identify promising type A buffer locations. On each promising
location a more accurate method for estimating the cost is used
for final validation. This method is described later in this paper.

(B) Type B Buffer Insertion

"The second kind of buffer insertion called Type B buffer
insertion is illustrated in Figure 2(b). Here the gate G is driving
-a number of fanout loads, some -on violating paths and some on
non-violating paths. In this case it is beneficial to add a buffer on
the non-violating paths. This isolates the violating paths from the
slowdown due to the load C, of non-violating fanouts. Using a
simple RC model the speedup of the violating path in Figure 2(b)
after buffer insertion is ATji=R,- (C;+C)—Ry- (c+C). The
speedup for the non-violating path is & Tk=R,- (C;+Cp—Ry-
(c+C)—7-Cp An approximate estimate of the cost(power)
reduction due to buffer insertion can also be derived for type B
buffer insertion. This estimate is used to quickly identify promising

type B buffer locations. A more accurate method described later
in this paper is then applied on these promising locations to get
a good estimate of the actual cost reduction.

M. Overall Algorithm

The buffer insertion algorithm is incorporated. into the TILOS
algorithm main loop. The TILOS starts with transistors in their
minimum sized configuration. With minimum transistor size the
circuit delay is normally larger than the clock specification and
latches in the circuit give rise to timing-violations. In order to
verify and update timing information, the static timing analysis
tool similar to Pearl[6] is chosen as our main timing engine. The
static timing analyzer is modified to efficiently handle incremental
timing updates. When a circuit element is changed, the effects of
timing downstream of its cone of influence are incrementally
updated. Because of convergent fanin and latches, the effects of .a
change usually die out after a few levels of- logic: Also, an
efficient priority queue heap data structure for all timing
constraints is maintained in our timing analysis engine. The top of
the heap comains the most violated constraint. After a change to
the circuit, the timing is incrementally recomputed, all affected
constraints are examined and the heap is adjusted with new most
violating constraint at the top of the heap. This entire operation is
very efficient and a number of complete updates per second can
be performed even for circuits of several thousand transistors.

To perform buffer- insertion the TILOS main loop is augmented '
to first sweep through the critical path for buffer insertion. Buffer
positions for which cost can be reduced while maintaining the
timing of the current iteration on all circuit paths (same violations
and slacks on all latch inputs) are considered and the best such
location is identified. If such a location exists then the cost-delay
curve for this buffer position is below the cost-delay curve of
sizing alone for the current delay (see Figure 1). The best buffer
location will have a low cost and a small cost slope for the
current circuit delay. As mentioned earlier it is assumed (and is
generally the case) that the buffer curve. will remain below the
sizing curve for smaller circuit ‘delays. Without this assumption it

could become necessary to remove buffers as the circuit speed is.

increased during optimization. If a suitable buffer position is
found, the buffer is inserted, the neighborhood of the buffer is
resized to maintain the same circuit delay and sizing is skipped
for the current TILOS iteration. Otherwise the critical path is
scanned again to determine the best transistor to size according to
the TILOS algorithm. After the circuit has been modified either
through buffer insertion or sizing, timing on all ‘paths is incre-
mentally recomputed and the constraint heap readjusted.

The main loop of “our concurrent sizing and’ buffer insertion
algorithm examines transistors on the critical path which is
defined as the most violating timing path. At first the function of
buffer insertion is called to add a buffer in proper location only

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 6, 1997 31

if it is beneficial to add a buffer. If the buffer insertion function
returns ni/ such that the buffer insertion is not advantageous over
sizing, the function of sizing is called to improve the delay of the
critical path. Then the timing change due to either sizing, or the
buffer insertion is propagated to the “cone of influence.” Because
of convergent fanin and latches, the effects of a change usually
die out after a few levels of logic. As the next step, setup
constraints are recomputed and the heap is adjusted to have new
critical path available for next iteration. If there is no more timing
violation, the main loop is terminated and newly sized netlist with
buffers is retumed as the result. Otherwise, the loop of buffer
insertion and sizing continues until there is no timing violation.
An overview of the overall algorithm is given below. Details of
how the buffer insertion position is found are given in the next

section.

Downsize transistors to minimum size or cost
While (slack(WorstConstraint) < 0)
For each node in critical path
See if a buffer can help reduce cost
If there is a good buffer position
Insert buffer at best position
Resize buffer neighborhood for same delay
else
For each transistor on critical path
Find improvement by sizing transistor
Increase size of best transistor
Update timing and critical path information

1. Layout Model

In most existing circuit optimization methodologies that take
into account layout parasitics, optimization and physical layout
generation operate as two loosely coupled alternating steps.
Optimization is performed after an initial estimate of placement is

known. The placement is recomputed after optimization and the

loop is repeated until all constraints are met. For high perfor-
mance design it is beneficial to couple the two steps more closely
so that updated layout information is available at all times to the
optimizer. In our approach a model for layout is maintained and
kept updated as the optimization progresses. Through the use of
this model the optimizer capitalizes on available layout area and
steers the optimization process to preferentially upsize those
devices as well as insert buffers with the least impact on area.
Since the circuit with the smallest active area is not necessarily
the one with the smallest layout area, the optimizer under user
control can be adjusted to favor a reduction in active area, layout
area, or a combination of both. During sensitivity calculation the
cost of increasing a transistor includes the physical area. To esti-
mate the physical area increase due to a transistor size increase
the x and y coordinations of transistors with their widths and
lengths are stored in a file called layout model. By utilizing the

layout model which contains not only the locations of transistors
but also the slacks in layout area, both transistor sizing and buffer
insertion can be performed with the least possible layout area.
The details of buffer insertion algorithm are described next.

IV. Buffer Insertion

The previous section described how the buffer insertion
algorithm resides within the overall sizing and buffer insertion
strategy. This section describes how the best buffer position (if
one exists) is selected. The buffer insertion algorithm is broken
up into two parts. In the first part buffer insertion positions are
generated. Estimates for the buffer insertion cost developed in
sections (A) and (B) are used to quickly prune out buffer .
insertion positions that have little hope of yielding good results.
This part of the algorithm described in Section IV. 1 can be tuned
to generate only a few possibilities thus speeding up run time or
generate a more exhaustive list thus improving the final result at
the expense of run time. In the second part each promising buffer
location generated above is examined more carefully to accurately
determine the overall cost of inserting a buffer at that location.
This involves finding the overall cost of the circuit with the
buffer inserted if it were required to meet the timing of the
unbuffered circuit” at the current TILOS iteration. One way to
achieve this is to run the TILOS algorithm from the start on the
buffered circuit. To avoid the enormous computational burden of
this, TILOS is run on a small local neighborhood of the inserted
buffer as described in Section IV.2. First the local neighborhood
of the circuit is copied into the template window. TILOS is then
run on the template window. From the resuits of this local TILOS
run the cost of the overall circuit is extrapolated. The buffer
insertion part of the overall algorithm is summarized below.

For each node on critical path
Run buffer location generator function on node
Add all good locations into candidate location set S.
For each configuration in S,
Map configuration onto template window
Run quick sizing in template window
Identify best configuration Best, from template window runs
If Best. lowers power cost for current timing
Add a buffer and update sizes
Elise go to sizing

1. Buffer Location Generation

The purpose of the buffer location generator is to produce
buffer insertion locations that will be fed into the template
window. Given a node N on the critical path the buffer location
generator identifies buffer locations that have the potential of
reducing circuit cost for the same circuit delay. Each configuration

32 KIM : SIMULTANEOUS TRANSISTOR SIZING AND BUFFER INSERTION FOR LOW POWER OPTIMIZATION

critical

violating

near-violating

non-violating

Fig. 3. Potential Buffer Location in Fanouts.

splits the fanouts of N into a buffered set S, and an unbuf-
fered set S,,p..,-5S_[unbuffered]$. For a node N with n fanouts
there are 2" possible conﬁgurations, each one corresponding to a
buffer insertion location. Because of the lafge number of config-
urations, enumerating all possibilities and rejecting the unsuitable
ones is not computationally practical. A branch and bound like
strategy is developed to reduce the number of configurations that
need to be explored. When considering a candidate location the
buffer location, generator takes into account both circuit delay and
routing capacitance. The routing capacitance translates into cost
which is minimized by our algorithm. The gates in the fanout set
of a node N can be categorized into four distinct classes. Each
class relates to the criticality of the corresponding path. The four
classes of paths are critical path, violating path, near—violaﬁng
path, and non-violating path. The definitions of the critical and
violating paths are in section II.-A path which has the delay
slightly smaller than the worst path at the current TILOS iteration
is defined as a near-violating path. Thus it is possible for the
near-violating path to become a violating path if a buffer is
inserted on the path. A path which in all likleyhood will never
become violating even if a buffer is inserted along the path is
defined as a non-violating path. Figure 3 shows the four
categories of paths for the fanouts of gate G. By categorizing the
paths in this fashion, the good candidate buffer insertion locations
become more apparent.

To classify paths into the four categories shown in Figure 3,
the slack values on each of the fanout gates of G must be
computed prior to buffer location generation. A backward PERT-
like algorithm from the primary outputs to the primary inputs is
used to compute the slack at each of the fanout gates. Using the
slack at each fanout, a path can be categorized into the four
categories described earlier.

Figure 3 shows four buffer locations (B,, B;, By, andB;) that
become apparent after classification of the fanouts of gate G.
Position B, is usually safe in that since no buffer is inserted in

any of the violating paths, the violating paths are almost always

Put all fanouts in S, ..

Seoni= @ .
ExplorePossibility(Spypers @, 5 C(Spupera, @))
return(S ousigs).

ExplorePossibility(S msuper. Stusered, currenta C)
If (current ~C>0 , or some minimum amount)
S conties = Sconsies + (Stuttored» Suonbutier))
For each fanout F; in S, e) h -
new aC= AC(Suered=Fi, Siomsrer+ Fi)
if (current 5 C<{newaC) '
ExplorePossibility(Sierea— Fi, Suugterea+ Fi, new . C)

Fig. 4. Buffer Location Generation Algorithm.

sped up. However the capacitance of only the non-violating paths
is off loaded from the critical path. By moving the buffer to
positions B; and B, additional capacitance is offloaded from the
critical path. However the additional delay introduced by the
buffer may adversely affect the violating and near-violating paths.
Position B, is useful only if the increased drive capability of the
buffer over gate G offsets the delay introduced by the buffer.
The abovementioned classification of fanout gates and buffer
positions avoids considering obviously poor buffer location choices
such as buffering critical and non-violating paths but not violating
and near-violating paths. The branch and bound algorithm
described below is inspired from the above observations. Given a
buffer insertion location the algorithm uses some of the estimates
introduces in sections (A) and (B) to estimate the cost difference
A C(bufferedSet, unbufferedSet) between the buffered and unbuf-
fered circuit for the current TILOS iteration delay. The algorithm

~ begins by placing all the fanouts in the buffered set S

Fanouts are then moved to the unbuffered set S, only if this

improves the cost & C. The buffer location generation algorithm
is shown in Figure 4. The algorithm performs recursively. After
moving a fanout to the unbuffered set procedure Explore-
Possibility calls itself recursively to further explore the
ramifications of that move.

The cost function »Cost for a given configuration can be
estimated from the speedup for the buffered and unbuffered
branches, and the sensitivities and slacks for each of the paths
using the following formulas: T

A T(Sunsutser) = R { Cros— interconectCap (Smpngger) = Cougrer— 2 GateCaps(S umpuer)

& T (Supered) = R (Croer— interconectCap (S pmsuger) — 2 GateCaps(S umpmsrer)
— bufferDelay) '
A Costumtugrer= 23 (& TS umpuagrer) — slacks) < 1/ semsitivity;) + CostOf buffer)
B Costugrered= 22 { & T (Spupperea) —slack;) - 1/sensitivity;)
2 g

& Cost (S unbuffer, Sbu/}'zred) =5 Cost, unbuffer + 4 Cost buffered

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 6, 1997 33

It is assumed that the first inverter in the buffer does not get
upsized much so C,,, is that of a minimum sized inverter. Also
the buffer is assumed to be sized having the same driving
capability as that of the original gate. The values of the
interconnect capacitances interconnectCap(Sy ..) and intercon-
nectCap(Syeres) are obtained using routing estimates and the
original layout parasitics. These routing estimates can be deter-
mined from information in the layout model described in section
.1

Given a net N connecting n objects and occupying a bounding
box[7] of length L and width W, the routing capacitance of N is
estimated by : :

Capacitace= K L+WV» with k = constant

Let gy, n,,andn, be the number of objects connected to
respectively the original, unbuffered and buffered fanout nets.
Also let (L,, W),(L,, W),and (L,, W;) be the length and width
of respectively the original, unbuffered and buffered nets. The
values of Lg, L, L, W, W, and W; are obtained from the layout
model. The layout model maintains and manages the physical
location of all transistors in the layout. Except for a small
perturbation during buffer insertion these locations are the same
as in the original layout. Applying the above formula for the
parasitic capacitance to the unbuffered, buffered and original case
yields.

interconectCap(S mpusrer) = R(L, + W{)\/'n—l
interconectCap(Sy perea) = H(Lo+ Wz)\/Tz
where k= Cporat/ (Lo+ Wl g

2. Template Window Acceleration Method

For a given potential buffer insertion location a fast but
accurate mechanism for determining whether the proper conditions
for buffer insertion are met, is needed. The mechanism must also
return the proper sizes for transistors after buffer insertion. These
are sizes that transistors in the buffered circuit must have so that
the delay of the circuit after buffer insertion is that of the original
circuit. This operation puts the circuit on the “sizing and buffering”
curve at delay in Figure 1. To accomplish this efficiently, a
model of the buffered circuit in the vicinity of the buffered node
is built. To be accurate the template must extend to encompass
the entire circuit. In practice a small local neighborhood of the
buffered node is modeled using a fixedD) template similar to the
one shown in Figure 5(b). A buffered version of the original
circuit of Figure 5(a) is modeled by the template of Figure 5(b).
The timing boundary conditions of Figure 5(a) are imposéd on
the template of Figure 5(b). This is achieved through the use of

1) The number of fanouts in the template is not fixed.

Ta mapping Ta
. —_—
T, Ta T, Te
— X
T4 | cost, sizes Ts

(a) Original Circuit (b) Template

Fig. 5. Cost Analysis usiflg a Template Window.

latches on the periphery of the template. The timing on the clock
of the template latches correspond to those of the corresponding
ports of Figure 5(a). The latches are not present in the original
circuit and are placed in the template as a mechanism to enforce
timing constraints. After sizing, the template window will have
the same boundary timing conditions as the circuit of Figure 5(a).

(A) Increasing Template Accuracy

Although inverters are used to model the gates in Figure 5(a),
due consideration is given to the number of transistors in series in
each of the complex gates. To account for the fact that the
inverter has only one pullup or pulldown whereas the corresponding
gate may have several transistors in series, the inverter transistors
are given a multiplier factor for proper calculation of the final
cost.

The template window usually stops at the first level of logic
after the buffered node. Increasing the template window to
include more levels of logic downstream of the fanout node
allows the algorithm to produce a more realistic result. Stopping
the template window after the first level of logic assumes that
only those gates in this first level of logic are sized resuiting in
a overly pessimistic assumption. The pessimistic assumption
causes the cost-delay curve of the template window: to rise more
sharply than necessary. The cost-delay curve of the template is
manipulated to more accurately reflect the real circuit thus
making it appear as if the template actually encompassed several
levels of logic after the fanout node. By adding capacitance at the
output of the fanout inverters and appropriately adding delay to
the latch clocks, the cost-delay curve of the template can be made
to rise more slowly. At the output of each fanout inverter in the
template, an additional capacitor is added and the latch clock
signal is delayed appropriately. The capacitor value is computed
based on the number of levels of logic to the nearest latch, the
capacitance on each of the nodes on that path and the type of
gates on the path.

(B) Mapping Configurations to the Template Window

Each configuration proposed by the buffer location generator
for each of the nodes in the critical path is plugged into the
template window. A fast version of the TILOS algorithm is then
run on the window. The corresponding original circuit cost is then
computed from the size of the transistors in the template window
and the transistor multiplier factors. The configuration with the

34 KIM : SIMULTANEOUS TRANSISTOR SIZING AND BUFFER INSERTION FOR LOW POWER OPTIMIZATION

lowest cast is identified. If this configuration’ yields a total circuit
cost lower than ‘that of the original, the configuration is chosen
for buffer insertion. The sizes from the template including the
size of the buffer are then transferred into the original circuit.

V. Experﬁmemaﬂ Results

Our algorithm is implemented in C and contains static timing
analyzer modified to handle incremental updates. The algorithm
has been tested on both combinational circuits and sequential
circuits with™ transparent latches. Results. obtained by applying
transistor sizing on two industrial test cases are shown in Table 1.
Both designs in Table 1 use transparent latches and the resulting
optimized circuits make heavy use of cycle stealing to lower
cost(power). The layout of both circuits are implemented using a
transistor . level place and route tool. The netlist and complete
parasitics for. the. optimization of éach test cases..are extracted
from this physical layout of the circuit. The first test case C_unit
s a control block in-a microprocessor based design. The second
test case 4-bit-ALU is a small arithmetic unit.

Table 2 illustrates experimental results of simultaneous sizing
and buffering on the above circuits. As a result, five buffers in
_C_unit and 3 buffers in “4-bit-ALU were inserted by our
algorithm. Table 2 compares the active area (total of all. transistor
gate areas) using sizing alone with the active area achieved using
our concurrent sizing and buffer insertion algorithm. Run times
are on a Sparc 5 computer with 32MEG of main memory.

Table 2-shows that improvements of 10% to 20% can be
_ obtained and that the improvement increases as the timing
constraints become tighter. The existing buffers in the circuit were
not removed and both circuits ‘had buffers before optimization.
Experiments .are -being performed to investigate how much further
power .and area improvements can-be achieved by, removing all
the buffers before performing optimization.

Vi. Conclusion

A method for concurrent sizing and buffer ‘insertion based on
area delay cost curves is proposed. The buffer insertion algorithm
is incorporated into the TILOS sizing loop At each iteration the

"method examines potential buffer insertion locations along the
critical path. For each promising buffer position, the cost of the
buffered circuit for the same delay values of the current TILOS
iteration are computed. The decision where to insert buffers is
based on these costs. ‘Through buffer insertion the feasible reason
of the cost-delay curve is extended to encompass the envelop of
area delay curves for all buffer positions.

Table 1. Experimental Results : Sizing.

Circuit |No. Trans| Layout Style [Clock Period| Active Area Layout Area|-
unoptimized 10 ns 0.30 422
U-bit-AL] - - .- - 10mns 0.14 4.09
485 -
u : optimized 8 ms 0.18 421
7 ns 025 423
unoptimized 25 ns 3.32 210
S) 25 ns 126 . 19.9
C_unit 8001 -
i . optimized |- 20 ns 1.49 20.2
15 ns 2.11 23.9

Table 2. Experimental Results : Sizing and Buffering. = . -

L Area Area Imprové- | Run Time

Circuit |[No.Trans| Clock L. . i
(sizing) |(buffering)| ment(%)] (min)

10ns| 4.09 392 10 7

4-bit-ALU| 485 | 8ns | 540 4.01 16 10
7 ns 6.80 4.88 36 14

25 ns 199 - 19.7 10 15

20 ns 20.2 20.2 19 22

C_unit 8001 -

15 ns 239 21.5 20 75

14 ns |impossible| 26.7 22 89

References

[1]). Fishburn and A. Dunlop, “TILOS: A Posynomial program-
ming approach to transistor sizing,” Proceedings of the IEEE
International Conference on CAD, pp. 326-328, 1985. ‘

[2] Sapatnekar, V.B. Rao, P. Vaidya, and S.M. Kang, “An exact
solution to the transistor sizing problem for CMOS circuits
using convex optimization,” IEEE Transactions on Computer-
Aided Design, Vol. 12, pp. 1621-1634, Nov. 1993.

[31 M. Borah, R. M. Owens, and M. J. Irwin, “Transistor sizing -
for low power CMOS circuits,” IEEE Transactions on
Computer-Aided Design, Vol. 15, pp. 665-671, June 1996,

[4] K. J. Singh and A. Sangiovanni-Vincentelli, “A heuristic
algorithm for the fanout problem,” Proceedings of the IEEE '
Design Automation Conference, pp.. 357-360, 1988.

[5] C. L. Berman, J. L. Carter, and K. L. Day, “The fanout
problem: From theory to practice,” Advanced Research in
VLSI: Proceedings of the 1989 Decennial Caltech Confer-
ence, pp. 69-99, 1989. ' * 7

[61 J. Cherry, “Static Timing Analyzer-Pearl,” 25th IEEE Design
Automation Conference, 1988.

[7] A. Kahng and G. Robins, “On Optimal Interconnections for
VLSI,” Kluwer Academic Publishers, 1995.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997

[8]1 P. Winston, “Artificial . Intelligence 2nd Edition,” Addison-
" Wesley Publishing Company, 1984. -

[9] J. Kim, C. Bamji, Y. Jiang, and S. Sapatnekar, “Concurrent
Transistor Sizing and Buffer Insertion by Cdnsideﬁng Cost-
Delay Tradeoffs,” Proceedings of 1997 International Symposium
on Physical Design, pp. 130-135.

Ju-Ho Kim was born in Seoul, Korea, in
1963. He received the B.S. and Ph.D.
degrees in Computer and Information
Science from University of Minnesota at
Minneapolis in 1987 and 1995 respectively.
From 1995 to 1996, he worked as a senior
member of technical staff at Cadence

Design System Inc. San Jose, California.
Currently, he is an assistant professor at the department of com-
puter science in Sogang University. His major research interests
include CAD for VLSI, computer architecture, and hardware
system design.

