• Title/Summary/Keyword: Low-contrast Image

Search Result 449, Processing Time 0.031 seconds

Effects of Iterative Reconstruction Algorithm, Automatic Exposure Control on Image Quality, and Radiation Dose: Phantom Experiments with Coronary CT Angiography Protocols (반복적 재구성 알고리즘과 관전류 자동 노출 조정 기법의 CT 영상 화질과 선량에 미치는 영향: 관상동맥 CT 조영 영상 프로토콜 기반의 팬텀 실험)

  • Ha, Seongmin;Jung, Sunghee;Chang, Hyuk-Jae;Park, Eun-Ah;Shim, Hackjoon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, we investigated the effects of an iterative reconstruction algorithm and an automatic exposure control (AEC) technique on image quality and radiation dose through phantom experiments with coronary computed tomography (CT) angiography protocols. We scanned the AAPM CT performance phantom using 320 multi-detector-row CT. At the tube voltages of 80, 100, and 120 kVp, the scanning was repeated with two settings of the AEC technique, i.e., with the target standard deviations (SD) values of 33 (the higher tube current) and 44 (the lower tube current). The scanned projection data were reconstructed also in two ways, with the filtered back projection (FBP) and with the iterative reconstruction technique (AIDR-3D). The image quality was evaluated quantitatively with the noise standard deviation, modulation transfer function, and the contrast to noise ratio (CNR). More specifically, we analyzed the influences of selection of a tube voltage and a reconstruction algorithm on tube current modulation and consequently on radiation dose. Reduction of image noise by the iterative reconstruction algorithm compared with the FBP was revealed eminently, especially with the lower tube current protocols, i.e., it was decreased by 46% and 38%, when the AEC was established with the lower dose (the target SD=44) and the higher dose (the target SD=33), respectively. As a side effect of iterative reconstruction, the spatial resolution was decreased by a degree that could not mar the remarkable gains in terms of noise reduction. Consequently, if coronary CT angiogprahy is scanned and reconstructed using both the automatic exposure control and iterative reconstruction techniques, it is anticipated that, in comparison with a conventional acquisition method, image noise can be reduced significantly with slight decrease in spatial resolution, implying clinical advantages of radiation dose reduction, still being faithful to the ALARA principle.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

A Study on the Colors and Coloration of Jeogori of Chosun Dynasty and the Modern Period of Korea

  • Lee, Jee-Hyun
    • International Journal of Costume and Fashion
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • The subject of study concerns the color characteristics of clothing/accessories from �Chosun�a nd modern Korea. It particularly focuses on the colors of the �Jeogori? traditional jacket) which represents Korean traditional clothing. Color data were collected from 353 woman�s �Jegori�s from �Chosun�a nd modern Korea and divided into the predominant colors & sub colors, and analyzed with HV/C and PCCS. According to the analysis, the representative the predominant color of 'Chosun Jeogori' for woman is YR, Y and side one is R, YR. The p, dp, sf, ltg colors are frequently found and the freshness of most of them is medium or low which shows a calm-feeling. The p, and ltg tones are often found as a the predominant color and p, dp are also often found as a the side color. In the 'Chosun Jeogori' for woman, the predominant colors and the side colors spread in a similar frequency and most of them have medium or low freshness of the color that shows a calm-feeling. The side color is one of the R colors and it shows characteristics of traditional coloring such as �Jajoo Goreum? Among the �Jeogori�f or modern women, the R, YR, Y, and B colors are often used for the single-color �Jeogori? the Y, GY, N, G colors are for the colorful �Jeogori? The P, lt, and b tons of the color are often used for a single-color �Jeogori�a nd the p, lt, and W are for the colorful �Jeogori? For the colorful �Jeogori? the side color have a high freshness which shows that a strong image was used frequently as the dp, s, dk tons of the color were often used. According to an analysis of the coloring, the predominant color and the side color of �Chosun Jeogori�a re applied to create a harmony of analogy & contrast in one aspect of Moon & Spencer�s view. It is found that the predominant color and the side color are similar or contrasting in one view of the color harmony, except that the traditional the �Jeogori�i s colored by ideological and symbolic meanings. The predominant color and the side color of modern the �Jeogori�a re complementary colors which are applied to the indistinct relationship or contrasting harmony in one aspect of Moon & Spencer�s view of the color harmony. The characteristics of the color as above show that traditional the �Jeogori�r egards the side color as both the harmony of the colors in general and also of symbolic meaning, while modern the �Jeogori�f or woman has a tendency toward a cultural transition and is mixed with new colors focusing more on its the predominant color than on the general harmony and character of ideological & traditional coloring.

Prevalence of Decreased Myocardial Blood Flow in Symptomatic Patients with Patent Coronary Stents: Insights from Low-Dose Dynamic CT Myocardial Perfusion Imaging

  • Yuehua Li;Mingyuan Yuan;Mengmeng Yu;Zhigang Lu;Chengxing Shen;Yining Wang;Bin Lu;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.621-630
    • /
    • 2019
  • Objective: To study the prevalence and clinical characteristics of decreased myocardial blood flow (MBF) quantified by dynamic computed tomography (CT) myocardial perfusion imaging (MPI) in symptomatic patients without in-stent restenosis. Materials and Methods: Thirty-seven (mean age, 71.3 ± 10 years; age range, 48-88 years; 31 males, 6 females) consecutive symptomatic patients with patent coronary stents and without obstructive de novo lesions were prospectively enrolled to undergo dynamic CT-MPI using a third-generation dual-source CT scanner. The shuttle-mode acquisition technique was used to image the complete left ventricle. A bolus of contrast media (50 mL; iopromide, 370 mg iodine/mL) was injected into the antecubital vein at a rate of 6 mL/s, followed by a 40-mL saline flush. The mean MBF value and other quantitative parameters were measured for each segment of both stented-vessel territories and reference territories. The MBFratio was defined as the ratio of the mean MBF value of the whole stent-vessel territory to that of the whole reference territory. An MBFratio of 0.85 was used as the cut-off value to distinguish hypoperfused from non-hypoperfused segments. Results: A total of 629 segments of 37 patients were ultimately included for analysis. The mean effective dose of dynamic CT-MPI was 3.1 ± 1.2 mSv (range, 1.7-6.3 mSv). The mean MBF of stent-vessel territories was decreased in 19 lesions and 81 segments. Compared to stent-vessel territories without hypoperfusion, the mean MBF and myocardial blood volume were markedly lower in hypoperfused stent-vessel territories (77.5 ± 16.6 mL/100 mL/min vs. 140.4 ± 24.1 mL/100 mL/min [p < 0.001] and 6.4 ± 3.7 mL/100 mL vs. 11.5 ± 4 mL/100 mL [p < 0.001, respectively]). Myocardial hypoperfusion in stentvessel territories was present in 48.6% (18/37) of patients. None of clinical parameters differed statistically significantly between hypoperfusion and non-hypoperfusion subgroups. Conclusion: Decreased MBF is commonly present in patients who are symptomatic after percutaneous coronary intervention, despite patent stents and can be detected by dynamic CT-MPI using a low radiation dose.

Study on the Current Status Analysis of Urban Green Spaces in Seoul Focusing on Elementary School Surroundings - Remote Sensing Based Vegetation Classification - (초등학교 주변을 중심으로 본 서울시 도시녹지 현황 분석 및 고찰 - 원격탐사 방법을 이용한 식생분류 -)

  • Kim, Hyun-Ok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.8-18
    • /
    • 2012
  • Urban nature plays an important role not only in the improvement of the physical environment but also from the perspective of psychological and social function. In particular, schoolyards as well as the green spaces near school surroundings function as a primary space for urban children to experience nature in Korea, as they spend most of their time at school. In this study, the status of urban green spaces near school surroundings was examined. For the analysis, 185 elementary schools in Seoul were selected and the green spaces within a radius of 300m(defined as 'school zone' in this study) were analyzed using the Rapid Eye multispectral satellite image data. The mean green space ratio of school zone accounts to about 21% with a high variation from 74% to 0.7% and more than half of the school zone have a green space ratio of less than 20%. Schools with a high green space ratio in their school zone are mostly located near urban forests, so forest areas particularly contribute to increase the green space ratio. Furthermore, forest vegetation shows relatively higher vitality than other green spaces located in urbanized areas. In contrast, schools with a low green space ratio in their school zone are mostly situated in high-density residential areas and the green spaces show relatively low vegetation vitality. Except for the urban forest, the majority of urban green spaces in urbanized areas are landscape green facilities in apartment districts. The other types of urban open spaces such as environmentally shaped schoolyards or street parks account only for a very small proportion of school surroundings. Therefore, it is needed to establish countermeasures in the context of urban planning; e.g. to promote the school forest projects preferentially by selecting schools with a extremely low green space ratio in their school zone, to foster roof greening in near surroundings, and to connect schoolyards organically with nearby apartment landscape green facilities as an easily accessible urban open space.

Study of Factors Controlling Exposure Dose and Image Quality of C-arm in Operation Room according to Detector Size of It (Mainly L-Spine AP Study) (수술 중 C-Arm Neutral AP 검사 시 조절인자에 따른 피폭선량 및 화질비교(L-Spine AP검사를 기준으로))

  • CHOI, Sung-Hyun;JO, Hwang-Woo;Dong, Kyung-Rae;Chung, Woon-Kwan;Choi, Eun-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Materials and methods: Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. Result: According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed does. Finally, when OFD was increased, spatial resolution was 4 to 5 step was increased. However, low contrast resolution was not relative. Moreover, there was 1.363 times difference of magnification (p<0.05). Conclusion: When C-Arm is used, avoiding contamination of patient is more important factor than reducing exposed dose of health professional in operation room. Just controlling exposure time is just way to reduce the exposed does of workers. However, in the case, non-probability influence could be occurred. Therefore, this study proved that the exposed dose will be reduced if the factors such as using small detector size of C-arm, setting OFD from 20 cm to 25 cm and non-collimating. Moreover, dose management of C-arm in the non-interesting area will be considered additionally.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images (컴퓨터보조진단을 이용한 유방 초음파영상에서의 미세석회화 검출 효율)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Park, Hyung-Hu;Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70~98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features (시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델)

  • Choi, Lark Kwon;You, Jaehee;Bovik, Alan C.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.131-143
    • /
    • 2014
  • We propose a no-reference perceptual fog density and visibility prediction model in a single foggy scene based on natural scene statistics (NSS) and perceptual "fog aware" statistical features. Unlike previous studies, the proposed model predicts fog density without multiple foggy images, without salient objects in a scene including lane markings or traffic signs, without supplementary geographical information using an onboard camera, and without training on human-rated judgments. The proposed fog density and visibility predictor makes use of only measurable deviations from statistical regularities observed in natural foggy and fog-free images. Perceptual "fog aware" statistical features are derived from a corpus of natural foggy and fog-free images by using a spatial NSS model and observed fog characteristics including low contrast, faint color, and shifted luminance. The proposed model not only predicts perceptual fog density for the entire image but also provides local fog density for each patch size. To evaluate the performance of the proposed model against human judgments regarding fog visibility, we executed a human subjective study using a variety of 100 foggy images. Results show that the predicted fog density of the model correlates well with human judgments. The proposed model is a new fog density assessment work based on human visual perceptions. We hope that the proposed model will provide fertile ground for future research not only to enhance the visibility of foggy scenes but also to accurately evaluate the performance of defog algorithms.