• Title/Summary/Keyword: Low-contrast Image

Search Result 449, Processing Time 0.028 seconds

The viewing angle switching of TN-LCD with two tilted LC layer (기울어진 두 액정 층을 이용한 비틀린 네마틱 액정 셀의 시야각 조절)

  • Choi, Min-Oh;Lim, Young-Jin;Jeong, Eun;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.45-46
    • /
    • 2006
  • We have studied the viewing angle control using a twist nematic liquid crystal display (TN-LCDs). These TK-LCDs have the characteristics, of which is not good image quality, for examples low Contrast ratio and gray scale inversion problems at upper and down viewing direction. TN-LCDs have the function of switching between the wide viewing mode and narrow viewing angle mode using two tilted LC layers. Tilt angles of the two LC layers, $14^{\circ}$ and $60^{\circ}$ were required in both wide viewing angle and narrow viewing angle modes, respectively. Consequently, this device is compatible with two image performances of which the wide viewing angle mode and Narrow viewing angle mode.

  • PDF

An Approach to Improve the Contrast of Multi Scale Fusion Methods

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2018
  • Various approaches have been proposed to convert low dynamic range (LDR) to high dynamic range (HDR). Of these approaches, the Multi Scale Fusion (MSF) algorithm based on Laplacian pyramid decomposition is used in many applications and demonstrates its usefulness. However, the pyramid fusion technique has no means for controlling the luminance component because the total number of pixels decreases as the pyramid rises to the upper layer. In this paper, we extract the reflection light of the image based on the Retinex theory and generate the weight map by adjusting the reflection component. This weighting map is applied to achieve an MSF-like effect during image fusion and provides an opportunity to control the brightness components. Experimental results show that the proposed method maintains the total number of pixels and exhibits similar effects to the conventional method.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

A fast single image dehazing method based on statistical analysis

  • Bui, Minh Trung;Bang, Seongbae;Kim, Wonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.116-119
    • /
    • 2018
  • In this paper, we propose a new single-image dehazing method. The proposed method constructs color ellipsoids that are statistically fitted to haze pixel clusters in RGB space and then calculates the transmission values through color ellipsoid geometry. The transmission values generated by the proposed method maximize the contrast of dehazed pixels, while preventing over-saturated pixels. The values are also statistically robust because they are calculated from the averages of the haze pixel values. Furthermore, rather than apply a highly complex refinement process to reduce halo or unnatural artifacts, we embed a fuzzy segmentation process into the construction of the color ellipsoid so that the proposed method simultaneously executes the transmission calculation and the refinement process. The results of an experimental performance evaluation verify that compared to prevailing dehazing methods the proposed method performs effectively across a wide range of haze and noise levels without causing any visible artifacts. Moreover, the relatively low complexity of the proposed method will facilitate its real-time applications.

  • PDF

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

A Study on the Color Images of the Films "Thirst" and "Mother" - With a Focus on Costumes and Background - (영화 <박쥐>, <마더>의 색채 이미지 연구 - 의상과 배경을 중심으로 -)

  • Yang, Jung-Hee;Park, Hye-Won
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.144-160
    • /
    • 2011
  • This study investigated the colors of the costumes and backgrounds of characters in the films "Thirst" and "Mother" from an integrated perspective. As a study method, ten scenes per film, which contained the characters and backgrounds from the start to the end of the DVDs of "Thirst" and "Mother" were examined. For integrated color analysis of the costumes and backgrounds, the colors of the captured scenes were simplified to extract representative colors, and then color palettes were presented according to the ratio of area. The colors of costumes were analyzed by recognition through the eyes based on the I.R.I. Hue and Tone 120. Furthermore, the color images of the two films were analyzed using the I.R.I. adjective image scales and the I.R.I. color image scales. The colors of the film "Thirst" were generally low in brightness and high in chroma. They are characterized by dark, gloomy toned-down background in the first half, highly chromatic vivid background in the second half, and the contrast of purple blue colors and red colors. The colors of the film "Mother" are characterized by complementary colors between background and costume colors, and various tones of blue and green colors. From the aspect of color tones, they were relatively high in brightness compared to the film "Thirst" but low in chroma. On the I.R.I. adjective image scale, contrasting adjectives were extracted simultaneously from the film "Thirst" as the adjectives were evenly distributed at hard, dynamic and static, whereas the adjectives extracted from the film "Mother" were distributed at hard and statistic. On the I.R.I. color image scale, both films were located at hard, but the film "Thirst" was located at dynamic whereas the film "Mother" was located at static.

Extracting gall bladders from ultrasound images

  • Kim, Hyoung-Seop;Ishikawa, Seiji;Kato, Kiyoshi;Tsukuda, Masaaki;Matsuoka, Jun-nosuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.248-251
    • /
    • 1995
  • Nowadays, the internal images of a human body can be easily provided by the ultrasound imaging, the X-ray CT, or the MRI device, among which the ultrasound imaging device has good resolution for soft tissues of a human body compared with the other devices. Furthermore, the use of ultrasound imaging devices will increase in future especially in the obstetrics, territory, since it does not give harm to the human body. Although several techniques have been investigated until now in order to extract organs from ultrasound images, very few of them have achieved satisfactory results because of low contrast and high noise nature of images. This paper proposes a technique for automatic extraction of the gall bladder area from ultrasound images. The proposed technique first extracts a small reliable area of a gall bladder from an ultrasound image employing smoothing, binarization, expanding and shrinking, and labeling, and then expands the area referring to the binarized version of the original image. The technique is examined its performance by real ultrasound images of a gall bladder and satisfactory results are obtained. Some problems to be solved are discussed finally.

  • PDF

Effects of Settings in Dynamic Ranges and Frequency Modes on Ultrasonic Images (초음파 영상에서 동적영역과 주파수 방식의 설정에 따른 효과)

  • Yang, Jeong-Hwa;Kang, Gwan-Suk;Lee, Kyung-Sung;Paeng, Dong-Guk;Choi, Min-Joo
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.277-283
    • /
    • 2009
  • It is important to get clinical ultrasonic images of good quality for accurate diagnosis. In this study, it observed the change of ultrasonic images against setting frequency, dynamic range(DR) and type of probes on ultrasonic scanner. In the experiment it evaluated image of LCS (Low Contrast Sensitivity) targets(-15, -6, -3, +3, +6, +15 dB) of a standard ultrasonic test phantoms(539,551, ATS, USA) similar to solid and cystic lesions. Its imaged from convex (C3-7IM) and linear probe (L5-12IM) on SA-9900 (Medison Ltd, Korea) scanner. The images obtained altering the setting parameters which are frequency(gen, pen, res, harmonic) mode and DR($40{\sim}100\;dB$). The quality of images evaluated compare with the nominal LCS value of target and measured LCS value. The results show that there was no significant changing of quality images altering DR 40, 60, 80, 100 dB against frequency in Convex probe but the image being the highest in LCS target at DR 60 dB, harmonic of frequency mode in the -15 dB target close to cystic lesion. In Linear probe, DR 40 dB, harmonic mode at -15 dB LCS target close to nominal value. It discussed necessity of evaluation about ROC(Receiver Operating Characteristic) from the psychological viewpoint and limit of evaluation from quantified images.

  • PDF

Development of Automatized Quantitative Analysis Method in CT Images Evaluation using AAPM Phantom (AAPM Phantom을 이용한 CT 영상 평가 시 자동화된 정량적 분석 방법 개발)

  • Noh, Sung Sun;Um, Hyo Sik;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.163-173
    • /
    • 2014
  • When evaluating the spatial resolution images and evaluation of low contrast resolution using CT standard phantom, and might present a automated quantitative evaluation method for minimizing errors by subjective judgment of the evaluator be, and try to evaluate the usefulness. 120kVp and 250mAs, 10mm collimation, SFOV(scan field of view) of 25cm or more than, exposure conditions DFOV(display field of view) of 25cm, and were evaluated the 24 passing images and 20 failing images taken using a standard reconstruction algorithm by using the Nuclear Associates, Inc. AAPM CT Performance Phantom(Model 76-410). Quantitative evaluation of low contrast resolution and spatial resolution was using an evaluation program that was self-developed using the company Mathwork Matlab(Ver. 7.6. (R2008a)) software. In this study, the results were evaluated using the evaluation program that was self-developed in the evaluation of images using CT standard phantom, it was possible to evaluate an objective numerical qualitative evaluation item. First, if the contrast resolution, if EI is 0.50, 0.51, 0.52, 0.53, as a result of evaluating quantitatively the results were evaluated qualitatively match. Second, if CNR is -0.0018~-0.0010, as a result of evaluating quantitatively the results were evaluated qualitatively match. Third, if the spatial resolution, as a result of using a image segmentation technique, and automatically extract the contour boundary of the hole, as a result of evaluating quantitatively the results were evaluated qualitatively match.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF