• Title/Summary/Keyword: Low-concentration sulfuric acid

Search Result 49, Processing Time 0.021 seconds

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Determination of Uric Acid by Chemiluminescence Measurement Using Tris(2,2'-bipyridine)ruthenium(II)-Octylphenylpolyglycol Ether System

  • Kim, Young-Sang;Park, Jeung-Hee;Choi, Yoon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1177-1181
    • /
    • 2004
  • The determination of uric acid in urine samples was studied by a chemiluminescence measurement using tris (2,2'-bipyridine)ruthenium(II)-octylphenylpolyglycolether [Ru$(bpy)_3^{2+}$ -OPE] system. The oxidized uric acid by Ce(IV) excited Ru$(bpy)_3^{2+}$ to emit a chemiluminescence in this system so that the intensity was stoichio-metrically dependent upon the concentration of uric acid. In a reaction cell, a luminescent reagent, oxidant, surfactant and sulfuric acid were flowed into and mixed with a taken sample. Experimental conditions were optimized to obtain the maximum intensity of chemiluminescence. Each reactant solution of more than the following concentration gave a good result: $2\;{\times}\;10^{?4}$ M Ru$(bpy)_3^{2+}$ , 0.01 M Ce(IV), 6% OPE, and 0.33 M $H_2SO_4$. Any interferences were not shown in this process by the investigation of concomitant constitutes such as albumin, creatine, lactic acid, glucose, urea, $Cl^?,\; Mg^{2+},\;Ca^{2+}$ and so on. The linearity of a calibration curve was good with r = 0.998, the relative standard deviation of the slope was 3.3% and the detection limit was 5.6ng/mL. The recoveries of 80 to 91% were obtained from the standard spiked samples. The values were little bit low, but this procedure could be considered to be reliable for the determination of trace uric acid in urine samples.

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung;Nguyen, Trung Hau;Sukwong, Pailin;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2018
  • The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.

L-라이신 발효에 있어서 당밀전처리의 영향

  • Shin, Hyun-Chul;Kim, Seong-Jun;Sung, Jin-Suck;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.376-379
    • /
    • 1996
  • Cane molasses, the most widely used carbon source for the industrial fermentation of L-lysine, usually contains a high concentration of calcium ions which tend to cause scaling problem in the recovery process. To remove the calcium ions, cane molasses was pretrea ted with sulfuric acid by adjusting the pH to 2.5-3.5. When the pretreated solution was directly heat-sterilized and used in the fermentation, a significant reduction in L-lysine production was observed. In this paper, we proved that sucrose is a superior substrate for L-lysine fermentation to that of glucose or fructose and that the above-mentioned decrease of L-lysine production was caused by the hydrolysis of sucrose in the molasses when the molasses was heat-sterilized at a low pH. The problem was overcome by adjusting the pH of molasses to neutral before sterilization.

  • PDF

Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation (양극산화에 의한 다공성 알루미나 막의 기체투과 특성)

  • 함영민
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

Glass Thinning by Fluoride Based Compounds Solution with Low Hydrofluoric acid Concentration (저불산 불소계 화합물 수용액을 이용한 글라스 박판화)

  • Kim, Ho-Tae;Gang, Dong-goo;Kim, Jin-Bae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.557-560
    • /
    • 2009
  • In this study, a new wet etching method and the solution for thinning the glass with the thickness below $100{\mu}m$ were investigated. For the preparation of etching solution with low hydrofluoric acid, it was effective to use $NH_4F$ or $NH_4HF_2$ as a main ingredient with the addition of sulfuric acid or nitric acid. Influence of the composition of mixed acid solution and the temperature on the etching rate was investigated. The addition of anionic surfactant provides the function to prevent the adhesion of sludge generated by the etching reaction. A new wet etching pilot device equipped with streaming generation parts was used to test etching of commercial non-alkali glass and soda lime glass. The non-alkali glass with the thickness of 640 ${\mu}m$ and soda lime glass with the thickness of $500{\mu}m$ were etched to $45{\mu}m$ and $100{\mu}m$, respectively, by using the pilot device. After the etching by pilot device, the roughness degree of the glass surface was maintained at $0.01{\sim}0.02{\mu}m$.

Mechanical Properties of Elastomeric Composites with Atmospheric-Pressure Flame Plasma Treated Multi-Walled Carbon Nanotubes and Carbon Black (대기압 화염 플라즈마 처리한 다중벽 탄소나노튜브 및 카본블랙 강화 고무복합재료의 기계적 특성 연구)

  • Sung, Jong-Hwan;Lee, Dong-Joo;Ryu, Sang-Ryeoul;Cho, Yi-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1209-1215
    • /
    • 2010
  • The effects of multi-walled carbon nanotube (MWCNT) content, carbon black (CB) content, atmospheric-pressure flame plasma (APFP) treatment, and acid treatment on the mechanical properties of elastomeric composites were investigated. For pure or filled rubbers with the given amount of CB (20 and 40 phr), the tensile strength and modulus of the elastomeric composites increase similarly with the MWCNT content. A composite with APFP-treated MWCNTs shows a hardening effect (high strength, high modulus, and high ductility) unlike the one with untreated MWCNTs. On the other hand, a composite with APFP-treated CB shows a softening effect (high strength, low modulus, and high ductility), which is unlike a composite with untreated CB. As the refluxing time increases from 1 h to 2 h and the sulfuric acid concentration increases from 60% to 90%, the tensile strength and modulus of a composite decrease. Thus, it is found that the MWCNT content, CB content, APFP treatment, sulfuric acid concentration, and refluxing time have an important effect on the mechanical properties of NBR composites.

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

Electrodeposition of Copper on Porous Reticular Cathode(1) - Effect of Cupric Son Concentration - (다공성 그물구조 음극을 이용한 구리 전착에 관한 연구 (I) - 전해질 중의 구리 이온 농도의 영향 -)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.152-156
    • /
    • 2000
  • The effect of cupric ion concentration on the throwing power has been studied in the electrodeposition of Cu on the porous reticular electrodes with the electrolytes of $CuSO_4\;and\;H_2SO_4$. Sulfuric acid electrolytes with lower concentration of $CuSO_4$ improved throwing power in electrodeposition of copper not only due to higher cathodic polarizability but also due to higher conductivity of the electrolytes. The increase in conductivity of the electrolytes at low concentration of $CuSO_4$ could be also illustrated by the decrease in viscosity of the electrolytes. It was found that both the throwing power and the limiting current density should be taken into account in the electrodeposition of Cu on the reticular electrodes. According to the experimental results, the electrolyte of 0.2M $CuSO_4$ and 0.5M $H_2SO_4$ was found to be the most appropriate condition at the current density of $10mA/cm^2$.

The Heavy Metals Recovery from Carbonized CCA Treated Wood (CCA방부목재의 탄화가 중금속 회수에 미치는 영향)

  • Son, Dong-won;Cheon, Seon-Hae;Lee, Myung Jae;Lee, Dong-heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.95-100
    • /
    • 2005
  • The using amount of preservative-treated wood equipments has been increased. Specially, chromate copper arsenate (CCA) has been widely used to exterior wood. We are faced to the disposal problem after service period of CCA treated wood due to its toxic heavy metals. For the disposal of end-used treated wood, land-filling and incinerating methods are mainly applied. The essential problem of incinerating is an arsenic release into atmosphere. Low pyrolysis is suggested as the methods of protecting arsenic release during incineration. The heavy metals were recovered after combustion of the treated wood at the low temperature which arsenic can not released. The recovery amounts of effectiveness compounds was determined in various solvents (citric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid) and different temperature (300, 400, $500^{\circ}C$). The higher temperature was applied, the more copper was recovered. The chromium was difficult to be recovered on the carbonized CCA treated wood at 0.5% acid concentration. The recovery mass of arsenic decreased on the higher combustion treated wood. The recovery of chromium was difficult due to the chemical change of the chromium arsenate during pyrolysis.