• Title/Summary/Keyword: Low-birefringence fiber

Search Result 15, Processing Time 0.025 seconds

A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber

  • Wang, Jingli;Chen, Heming;Shi, Weihua
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.453-458
    • /
    • 2014
  • A novel high birefringent polymer terahertz (THz) fiber with a suspended elliptical core is proposed in this paper. The introduction of an elliptical core can enhance asymmetry to realize high mode birefringence, and a large porous outer cladding effectively isolates the core-guided mode from interacting with the surrounding environment. A full-vector finite element method(FEM) is used to analyze the characteristics of the THz fiber. Simulation results show that the suspended elliptical fiber exhibits high mode birefringence on a level of $10^{-2}$ over a wide frequency range, and an extremely large mode birefringence(${\approx}0.06226$) is obtained when ellipticity is 0.2. Moreover, a suspended hollow elliptical core fiber is also discussed for the purpose of lower loss, however high mode birefringence and low relative absorption loss can not coexist in such a kind of fiber.

Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime

  • Habib, Md. Ahasan;Anower, Md. Shamim;Hasan, Md. Rabiul
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.567-572
    • /
    • 2017
  • A novel slotted-core hexagonal photonic crystal fiber (PCF) for terahertz (THz) wave guiding is proposed in this paper. A trade-off managed between effective material loss (EML) and birefringence for efficient guidance of THz waves is illustrated in this article. The rectangular slot shaped air-holes break the symmetry of the porous-core which offers ultra-high birefringence of $8.8{\times}10^{-2}$. The proposed structure offers low bending loss of $1.07{\times}10^{-34}cm^{-1}$ and extremely low effective material loss (EML) of $0.035cm^{-1}$ at an operating frequency of 1.0 THz. In addition other guiding properties such as power fraction, dispersion and confinement loss are also discussed. The proposed THz waveguide can be effectively used for convenient transmission of THz waves.

Study on Birefringence Effect Of Single-Mode Fiber on Output Spectra of High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Configuration (단일 모드 광섬유의 복굴절이 편광상이 배치구조 기반 고차 광섬유 빗살 필터의 출력 스펙트럼에 미치는 영향에 대한 고찰)

  • Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.8-15
    • /
    • 2012
  • In this paper, we investigated possible optical parameters causing deviation of experimentally observed output spectra from theoretically predicted results in a high-order fiber comb filter based on a polarization-diversity loop configuration. They include wavelength dependency of half-wave plates (HWPs) inserted in the filter for wavelength switching and the modal birefringence of single-mode fibers (SMFs) with which optical components comprising the filter are connected. In order to consider the effect of the modal birefringence of the SMF on a filter performance, it is modeled as a low birefringence fiber with an arbitrary orientation angle and birefringence. It is found from the simulation results that the modal birefringence of SMFs strongly affects the spectral characteristics of the filter and decreases the extinction ratio of the filter, compared with the wavelength dependency of HWPs. In particular, it is also confirmed that the spectral deviation and asymmetric distortions of side-lobes in narrow band transmission spectra result mainly from the modal birefringence of SMFs.

Low Loss Highly Birefringent Porous Core Fiber for Single Mode Terahertz Wave Guidance

  • Habib, Md. Ahasan;Anower, Md. Shamim
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2018
  • A novel porous-core hexagonal lattice photonic crystal fiber (PCF) is designed and analyzed for efficient terahertz (THz) wave propagation. The finite element method based Comsol v4.2 software is used for numerical analysis of the proposed fiber. A perfectly matched layer boundary condition is used to characterize the guiding properties. Rectangular air-holes are used inside the core to introduce asymmetry for attaining high birefringence. By intentionally rotating the rectangular air holes of porous core structure, an ultrahigh birefringence of 0.045 and low effective material loss of $0.086cm^{-1}$ can be obtained at the operating frequency of 0.85 THz. Moreover, single-mode properties, power fraction in air core and confinement loss of the proposed PCF are also analyzed. This is expected to be useful for wideband imaging and telecom applications.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.

A Study on the Fabrication of Polarimetric Fiber Optic Current Sensor (편광측정법에 의한 광섬유 전류 센서 제작에 관한 연구)

  • Jang, Nam-Young;Chio, Pyung-Suk;Eun, Jae-Jeong;Park, Hae-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.33-41
    • /
    • 2004
  • In this paper, a polarimetric fiber optic current sensor(P-FOCS) is experimented and fabricated, and then a possibility to the commercial utilization of the P-FOCS is also investigated. The P-FOCS measures an applied current by a Faraday rotation linearly proportional to a magnetic field generated by the applied current. The bending-induced linear birefringence in the sensing fiber is minimized by using the low birefringent fiber. Also, all fiber-optic components are used to avoid optical losses coming from the use of bulk components. A signal processing circuit is constructed and used to eliminate the effects of intensity variations in the output signal due to losses coming from misalignments of components such as fiber connectors. Using the optical source of 632.8nm wavelength, Faraday rotation is measured by passing through the sensing fiber within the solenoid of about 1500 turns which is equivalent to a current source of about 7500A. In the range of 1000A to 7500A, the measurement error for linearity is within about 1.5%.

Magnetooptical Properties of low Birefringent Optical Fiber (저 복굴절 광섬유의 자기광학적 특성)

  • 나채동;김영수
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.1
    • /
    • pp.31-39
    • /
    • 1991
  • The polarization properties of low birefringent optical fiber due to intrinsie birefringence and magnetooptic effects are theoretically analyzed and experimented. The low birefringent fiber is fo¬und to have more excellent polarization maintaining properties than normal single mode optical fiber. As the experimental results, the polarizability of low birefringent optical fiber is measured over 0.818. The variation of output polarization angle with input polarization angle is measured within $9^{\circ}$. Imple¬mented magnetic field measuring system using low birefringent optical fiber can linearly measure the magnetic field strength up to lOkAT generated by solenoid. The maximum error is 1.95% in the magnetic field strength of 4kAT.

  • PDF

A Study on the High Current Measurement Using Low Birefringent Fiber (저 복굴절 광섬유를 이용한 대전류 측정에 관한 연구)

  • Jang, Nam-Young;Eun, Jae-Jung;Choi, Pyung-Suk;Park, Hae-Soo;Oh, Sang-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1970-1972
    • /
    • 2003
  • In this paper, a fiber optic current sensor(FOCS) is implemented by low birefringence fiber, and the characteristics of FOCS is investigated. Using the Faraday rotation, the electric current is measured. The measured error is calculated within 1.5% ranging from 1000 to 7500A.

  • PDF